Current Development in Non-Equilibrium Switching: The Mapper Feature

Presented by Gaetano Calabró, PhD Senior Scientific Software Developer Thursday, June 30, 2022

Overview

- Introduction and Background
- The OE Mapper Features
- The OE Mapper Validation
- Conclusions

MD in Structure-Based Lead Optimization

Heavier MD methods staged to offer more value later in triaging

MD in Structure-Based Lead Optimization

Heavier MD methods staged to offer more value later in triaging

RBFE Methods NES (Non-Equilibrium Switching)

Bert L. De Groot

Vytautas Gapsys

RBFE Methods NES (Non-Equilibrium Switching)

- Fast non-equilibrium transitions through λ (0.05 ns)
- Simulation minimally (80+80) X 0.05ns
 - = 8 ns/edge
- Massively parallelizable!

Equilibrium (80 snapshots)

В

 $W_{B \rightarrow A}$

RBFE Methods

NES (Non-Equilibrium Switching)

BAR:
$$\sum_{i=1}^{n_f} \frac{1}{1 + \exp\left(\ln\frac{n_f}{n_r} + \beta(\mathbf{w_i} - \Delta G)\right)} = \sum_{j=1}^{n_r} \frac{1}{1 + \exp\left(\ln\frac{n_r}{n_f} + \beta(\mathbf{w_j} - \Delta G)\right)}$$

In general, given N compounds N(N-1)/2 possible edges

- 11 Thrombin inhibitors (55 edges) ~ \$550
- 32 Bace inhibitors (496 edges) ~ \$5500

- The mapper should avoid "difficult" edges
- Cycles closure help in the Affinity prediction introducing redundances
- To expensive running all the edges

The OE Mapper

- The Mapper goal is to produce a set of edges where the transformed pair of compounds are "similar": the RBFE edge calculation is likely to be successful and accurate
- The OE Mapper is mainly based on LOMAP^(*)
 - LOMAP uses the chemical graph only (MCS)

The OE Mapper floe report

The Mapper Score

The similarity Matrix Scoring

$$S_{i,j} = \prod_{k=1}^{M} R_k(i,j)$$

(With OpenEye variations)

- R_k Charge Based
 - If C_i and C_i same charge 1 else 0
- R_k MCSS Based (GMX biased)
 - (a) $H(mcs_{hw} ths)$
 - (b) $e^{-\beta(Nhw_i+Nhw_j-2mcs_{hw})}$
- R_k ROCS Based
 - Shape and Color

The Mapper Score

The similarity Matrix Scoring

(With OpenEye variations)

ge Based and C_j same charge 1 else 0 Based (GMX biased)

$$I(mcs_{hw} - ths) - \beta(Nhw_i + Nhw_j - 2mcs_{hw})$$

- R_k ROCS Based
 - Shape and Color

The Mapper Score

The similarity Matrix Scoring

(With OpenEye variations)

ge Based and C_j same charge 1 else 0 Based (GMX biased)

$$I(mcs_{hw} - ths) - \beta(Nhw_i + Nhw_j - 2mcs_{hw})$$

- R_k ROCS Based
 - Shape and Color

The Mapper Graph

- Building the graph
 - 1. Create edges where $S_{ij} \geq Cut_{Off} > 0$

The Mapper Graph

- Building the graph
 - o For each one of the cluster minimize:
 - Cycles and MAXDIST constraints

The Mapper Graph

- Building the graph
 - Connect the Subgraphs:

 - (a) $\forall Cl_i, Cl_j \ e_{ij} \mid S_{i,j} = \max_{S_{Ci,Cj}}$ (b) $\forall Cl_h, Cl_k \ e_{hk} \mid S_{h,k} = \max_{S_{Ch,Ck} e_{ij}}$

$$\begin{pmatrix} 1 & S_{1,2} & S_{1,3} & \dots & S_{1,n} \\ S_{2,1} & 1 & S_{2,3} & \dots & S_{2,n} \\ \dots & \dots & \dots & \dots & \dots \\ S_{n,1} & S_{n,2} & S_{n,3} & \dots & 1 \end{pmatrix}$$

NES Protocol mainly followed Gapsys et al.*

(With OpenEye variations)

- GROMACS 2020
- OpenFF 2.0 (Sage) with Amber ff14
- Equilibrium runs done separately
 - Bound and unbound ligand
 - 1X 6 ns, no clustering
 - No NES knowledge embedded
- NES runs: 80 frames with 50ps switching per frame
 - OpenEye alchemical chimeric A/B ligands
 - $\Delta\Delta G$ correlations symmetrized around A \rightarrow B | B \rightarrow A
- Schrodinger JACS '15 datasets: 8 targets
- Hunt '13 Bace dataset and Calabro Thrombin 3-series dataset

NES Protocol mainly followed Gapsys et al.*

(With OpenEye variations)

- **GROMACS 2020**
- OpenFF 2.0 (Sage) with Amber ff14
- Equilibrium runs done separately
 - Bound and unbound ligand
 - o 1X 6 ns, no clustering
 - No NES knowledge embedded
- NES runs: 80 frames with 50ps swi

 - $\Delta\Delta G$ correlations symmetrized around $A \rightarrow B \mid B \rightarrow A$
- Schrodinger JACS '15 datasets: 8 targets
- Hunt '13 Bace dataset and Calabro Thrombin 3-series dataset

Compare:

- OE Mapper
- OpenEye alchemical chimeric A/B liga
 Literature maps (FEP+)

Common Edges Diverging Diagram

Tyk2

Metric	OE Mapper	Literature Mapper
Ligands	10	6
Edges	22	24

OE Mapper

Metric	OE Mapper	Literature Mapper
Pearson's r ²	0.783 ± 0.075	0.804 ± 0.074
Kendall's τ	0.750 ± 0.102	0.733 ± 0.114
MAE ^a	0.477 ± 0.092	0.454 ± 0.088
RMAEb	0.456 ± 0.091	0.434 ± 0.097

^aMean Absolute Error in kcal/mol.

^bMAE divided by the Mean Absolute Deviation of Experimental ΔG.

Thrombin

Metric OE Literature Mapper
Ligands 11
Edges 14 16

OE Mapper

kcal/mol

ΔG

Predicted

Metric	OE Mapper	Literature Mapper
Pearson's r ²	0.827 ± 0.113	0.824 ± 0.114
Kendall's τ	0.855 ± 0.119	0.818 ± 0.127
MAE ^a	0.588 ± 0.125	0.594 ± 0.113
RMAEb	1.399 ± 0.445	1.412 ± 0.381

^aMean Absolute Error in kcal/mol.

^bMAE divided by the Mean Absolute Deviation of Experimental ΔG.

PTP1B

OE Literature Metric Mapper Mapper Ligands 23 Edges 35 49

Common Literature

OE Mapper

Metric	OE Mapper	Literature Mapper
Pearson's r ²	0.385 ± 0.248	0.481 ± 0.170
Kendall's τ	0.503 ± 0.147	0.487 ± 0.133
MAE ^a	1.445 ± 0.251	0.995 ± 0.157
RMAEb	1.437 ± 0.373	0.989 ± 0.284

^aMean Absolute Error in kcal/mol.

bMAE divided by the Mean Absolute Deviation of Experimental ΔG.

PTP1B

Metric OE Mapper Mapper
Ligands 23
Edges 35
Literature Mapper

OE Mapper

Metric	OE Mapper	Literature Mapper
Pearson's r ²	0.385 ± 0.248	0.481 ± 0.170
Kendall's τ	0.503 ± 0.147	0.487 ± 0.133
MAE ^a	1.445 ± 0.251	0.995 ± 0.157
RMAEb	1.437 ± 0.373	0.989 ± 0.284

^aMean Absolute Error in kcal/mol.

^bMAE divided by the Mean Absolute Deviation of Experimental ΔG.

Direct Predictions of ΔG : 9 Datasets

OE NES has comparable accuracy to literature RBFE benchmarks

Conclusions

- The starting OE Mapper implementation performs as expected compared to literature maps
- Still the edge scoring sometimes does not reflect the accuracy of the calculation

Plans: include equilibrium information in the mapper scoring

Acknowledgements

- Christopher Bayly
- Agnes Huang
- Hyesu Jang
- Geoff Skillman

Thank You! © OpenEye

For more information, please contact:

sales@eyesopen.com info@eyesopen.com

www.openeye.inc

+1-505-473-7385

