Exploration and exploitation of crystal polymorph landscape

Hari Muddana

OpenEye, Cadence Molecular Sciences

Drug development pipeline

- Pharmaceutical Formulation
 - How to administer the drug? e.g. solid, injectable, etc.
 - Ensuring stability and delivery of drug

Crystal structure prediction workflow

CADENCE MOLECULAR SCIENCES

Z'=1 crystal structure predictions

Gestodene

O-acetamidobenzamide

NIIII

CSP7-XXXI

Two sides to physics-based molecular modeling

Energy Model

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation."

~PAUL DIRAC

Sampling

Sampling

Energy model

Energy model

- Multipole force-field, IEFF
- Dimer expansion approach for optimizing and scoring crystals
 - Optimize 1000's of crystal structures in a day
 - $_{\circ}$ $\,$ Compute Entropy of crystals at QM level within a day
 - Parallelization reaching 100K processors

Conformer Sampling

- Custom torsion rules for Omega conformer generation
 - Automated fragmentation
 - $_{\odot}$ $\,$ Torsion energy scanning and rule generation $\,$
- Multi-stage hierarchical sampling for highly flexible molecules
 - Identification of conformers that pack efficiently
 - Finer sampling of conformer space

Packing sampling

- Search parameters
 - \circ Conformer
 - Space group
 - Orientation of the asymmetric unit
 - Unit cell dimensions

Crystal polymorph landscape

Space group distribution

Dynamic multi-armed bandit Problem

P_X = Probability of getting a reward by sampling X X = {conformer, sg}

- Reward
 - 1 if the sample is a low-energy structure
 - 0 if the sample is a high-energy structure
- No reward for finding the same low-energy structure again
 - Evolving probability
 - $\circ \quad \mathsf{P}_{\mathsf{x}}(\mathsf{t}) < \mathsf{P}_{\mathsf{x}}(\mathsf{t}\text{-}1)$
- Finite total reward for each arm
- Other applications
 - Ad marketing, e.g. Facebook Ads
 - Web design, e.g. Google optimize
 - $_{\circ}$ $\,$ Clinical trials

Sampling strategies

- Balanced (null model)
 - No prior knowledge or learning
 - Sample all combinations of conformers and space groups uniformly
- Reinforcement learning
 - Thompson (Bayesian) sampling
 - Probability of sampling an arm is proportional to the probability of the arm being optimal
 - Sample according to the posterior probability distribution
 - Dynamic probability matching
 - Probability of sampling an arm is proportional to the observed mean probability of reward
 - Most recent samples are considered for calculating the mean probability (dynamic)

Thompson vs. Probability matching

- A/B Testing
 - $_{\odot}~$ A has a probability of 0.7 for reward
 - B has a probability of 0.3 for reward
- Thompson
 - Always pick "A"
 - \circ Average reward = 0.70
- Probability matching
 - Pick A 70% of the time, and B 30% of the time
 - Average reward = 0.7*0.7 + 0.3*0.3 = 0.58

Thompson Sampling (Bayesian)

- Prior distribution
 - $\circ \quad P_x^1 = Beta(\alpha = 1, \beta = 1)$
 - Uniform distribution

 $\underbrace{\mathfrak{E}}_{0.6}^{1.0} \underbrace{0.8}_{0.6}^{0.4} \underbrace{0.2}_{0.0}_{0.0} \underbrace{0.2}_{0.2}^{0.4} \underbrace{0.4}_{0.4}^{0.6} \underbrace{0.8}_{0.8}^{0.6} \underbrace{1.0}_{0.8}^{0.6} \underbrace{0.8}_{0.8}^{0.6} \underbrace{1.0}_{0.8}^{0.6} \underbrace{0.8}_{0.8}^{0.6} \underbrace{1.0}_{0.8}^{0.6} \underbrace{0.8}_{0.8}^{0.6} \underbrace{1.0}_{0.8}^{0.6} \underbrace{0.8}_{0.8}^{0.6} \underbrace{1.0}_{0.8}^{0.6} \underbrace{0.8}_{0.8}^{0.6} \underbrace{0.8}_{0.$

 $(\alpha = 1, \beta = 1)$

- Posterior distribution
 - $P_x^n = Beta(\alpha^{n-1} + r^n, \beta^{n-1} + 1 r^n)$
 - r^n = reward for nth sample
- Arm selection
 - \circ For each arm:
 - Generate a sample p_x from P_x^n
 - $_\circ$ Select 'x' with max. p_{χ}

 $(\alpha = 5, \beta = 20)$

Dynamic probability matching

- Common decision-making strategy used by adult humans
 - Intuitive but not optimal
 - Also used by cockroaches, fish, and pigeons
 - Kids, non-human mammals, and (statisticians?) use the Bayesian strategy (Bayes)
- Estimate P_{χ}^{n} as the mean probability of reward in the past $P_{\chi}^{n} = \frac{\sum_{i=1}^{n} r^{i}}{n}$
- (Dynamic) Estimate based on recent history of outcomes $P_x^{m,n} = \frac{\sum_{i=m}^n r^i}{(n-m)}$
- Sampling is proportional to the estimated probability
 - $\circ n_x \propto P_x^{m,n}$

Saldana, C., Claidière, N., Fagot, J. et al., Sci Rep 12, 13092 (2022).

Proof-of-concept: Case study

- Number of arms
 - o {conformer, sg} -> 38495
 - 99.3% of the arms give no reward
- Total landscape
 - **~31 million** minima
 - Prebuilt using exhaustive sampling
- Total reward
 - o # of low-energy structures = 2781

Proof-of-concept: Case study

Conclusions

- Thompson sampling outperforms balanced sampling
 - Thompson sampling is slow to adapt to evolving probabilities
 - Converges to optimal sampling in the long run
- Dynamic probability matching outperforms Thompson sampling
 - Higher early return-on-investment
 - Order of magnitude boost in sampling over balanced sampling
- Efficient sampling of conformer/sg space
 - Z'=2, co-crystals, and highly flexible drugs

Acknowledgements

- OpenEye
 - Caitlin Bannan
 - $_{\circ}$ Varsha Jain
 - $_{\circ}$ Grigory Ovanesyan
 - $_{\circ}$ Tom Darden
 - Geoff Skillman
 - $_{\circ}$ Anthony Nicholls

• GSK

- $_{\circ}$ Colin Edge
- \circ Luca Russo
- Alan Graves (Nimbus)
- $_{\circ}$ Deborah Loughney
- Eric Manas (Treeline)

