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Drug development pipeline

Target Lead Lead Pre-

identification generation optimization formulation

* Pharmaceutical Formulation
o How to administer the drug? e.g. solid, injectable, etc.
o Ensuring stability and delivery of drug
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Crystal structure prediction workflow
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/’=1 crystal structure predictions
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Two sides to physics-based molecular modeling

Energy Model Sampling

b=k log W
Sampling

“The underlying physical laws
necessary for the mathematical theory
of a large part of physics and the
whole of chemistry are thus
completely known, and the difficulty is
only that the exact application of
these laws leads to equations much
too complicated to be soluble. It
therefore becomes desirable that
approximate practical methods of
applying quantum mechanics should
be developed, which can lead to an
explanation of the main features of
complex atomic systems without too

Energy model

much computation.” 0 LVDWIG
~ BOLTZMANN
~PAUL DIRAC - 1844 -1906

O OpenEye

SCIENTIFIC

CRDENCE MOLECULAR SCIENCES



Energy model

 Multipole force-field, IEFF

 Dimer expansion approach for optimizing and scoring crystals
o Optimize 1000’s of crystal structures in a day
o Compute Entropy of crystals at QM level within a day
o Parallelization reaching 100K processors

O OpenEye
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Conformer Sampling

* Custom torsion rules for Omega conformer
generation
o Automated fragmentation
o Torsion energy scanning and rule generation

>

* Multi-stage hierarchical sampling for highly
flexible molecules
o ldentification of conformers that pack efficiently
o Finer sampling of conformer space
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Packing sampling

Search parameters
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Conformer
Space group
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Orientation of the asymmetric unit
Unit cell dimensions
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Crystal polymorph landscape
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Space group distribution
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Dynamic multi-armed bandit Problem

Pyx = Probability of getting a reward by sampling X
X = {conformer, sg}

Reward
o 1—if the sample is a low-energy
structure
o 0—if the sample is a high-energy
structure
No reward for finding the same low-energy
structure again
o Evolving probability
o Py(t) < P,(t-1)
Finite total reward for each arm
Other applications
o Ad marketing, e.g. Facebook Ads
o Web design, e.g. Google optimize
o Clinical trials

O OpenEye
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Sampling strategies

e Balanced (null model)
o No prior knowledge or learning
o Sample all combinations of conformers and space groups uniformly

 Reinforcement learning

o Thompson (Bayesian) sampling
Probability of sampling an arm is proportional to the probability of the arm being
optimal
Sample according to the posterior probability distribution
o Dynamic probability matching
Probability of sampling an arm is proportional to the observed mean probability of

reward
Most recent samples are considered for calculating the mean probability (dynamic)
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Thompson vs. Probability matching

 A/B Testing
o A has a probability of 0.7 for reward
o B has a probability of 0.3 for reward

* Thompson
o Always pick “A”
o Average reward =0.70

* Probability matching
o Pick A 70% of the time, and B 30% of the time
o Average reward =0.7*0.7 + 0.3*0.3 =0.58
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Thompson Sampling (Bayesian)

e Prior distribution

O

O

P! = Beta(a =1, =1)
Uniform distribution

e Posterior distribution

o Pl =Beta(a™ 1+ r" g1 +1-1")

O

r™ = reward for nth sample

e Arm selection

O

O

For each arm:
Generate a sample p, from P
Select x” with max. p,

f(x)
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Dynamic probability matching

* Common decision-making strategy used by adult humans
o Intuitive but not optimal
o Also used by cockroaches, fish, and pigeons

o Kids, non-human mammals, and (statisticians?) use the Bayesian strategy
(Bayes)

* Estimate P' as the mean probability of reward in the past

el
n _ Zi=1
o Pt ===—=—

X n

 (Dynamic) Estimate based on recent history of outcomes

pmn _ Z?:m rt

cox (n—m)
 Sampling is proportional to the estimated probability
o N, X me'n

Saldana, C., Claidiere, N., Fagot, J. et al., Sci Rep 12, 13092 (2022). GODEHEUE
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Proof-of-concept: Case study

| * Number of arms

O N\ o {conformer, sg}-> 38495
0O o 99.3% of the arms give no reward
" Z  Total landscape
>< '0 HN. N o ~31 million minima
“ “NH o Prebuilt using exhaustive sampling
—

* Total reward
o # of low-energy structures = 2781
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Proof-of-concept: Case study
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Conclusions

e Thompson sampling outperforms balanced sampling

o Thompson sampling is slow to adapt to evolving probabilities
o Converges to optimal sampling in the long run

 Dynamic probability matching outperforms Thompson sampling
o Higher early return-on-investment
o Order of magnitude boost in sampling over balanced sampling

» Efficient sampling of conformer/sg space
o Z’'=2, co-crystals, and highly flexible drugs
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