Turbocharging Gigadock[™] Warp with Active Learning of 3D Models

Mark McGann CUP XXII March 2023

ADENCE MOLECULAR

Overview

- Current Gigadock Warp
- Upgrading Gigadock Warp
- Testing Results

Gigadock[™] Floe

- Floe for complete docking of billions of molecules
- Part of Orion[®] since initial Orion release in March 2019

* A collection is a data storage mechanism in Orion[®] for Billions of Molecules

Gigadock Warp Floe

- Drop-in replacement of the Gigadock Floe
- Part of Orion since December 2021
- Goal : Produce same hit list as Gigadock at lower cost
 - Current release gets ~70% identical hitlist when docking Billions*

Why Gigadock Warp

- Latest Enamine collection ~12 Billion Molecules
 - In 2019 enamine was 1.4 Billion
 - Expect size of collections to continue to increase over time
- Cost to dock 12 Billion
 - o Gigadock Cost* : ~\$10K/Billion → ~\$120K
 - Gigadock Warp Cost** : ~\$1.2K/Billion** -> ~\$14K

* Cost varies strongly with size of the active site ** Estimated cost for current release version

Gigadock Warp - Algorithm

Gigadock Warp Compute Cost Breakdown

CADENCE MOLECULAR SCIENCES

Overview

- Current Gigadock Warp
- Upgrading Gigadock Warp
- Testing Results

Current FastROCS Selection in Gigadock Warp

Undocked Input Molecules (98%)

Full Docking of Top Molecules from FastROCS Selection (8%)

CADENCE MOLECULAR SCIENCE

Modeling with FastROCS Feature Vectors (FRFV)

Undocked Input Molecules (98%)

Full Docking of Top Molecules from FastROCS Selection (8%)

CADENCE MOLECULAR SCIENCE

FastROCS Feature Vector (FRFV) – 1 Stage Model

FastROCS Feature Vector (FRFV) – 2 Stage Model

Overview

- Current Gigadock Warp
- Upgrading Gigadock Warp
- Testing Results

Testing

- Targets 37 Receptors from MDUD* Dataset
- Molecules 5 Million Random Enamine Molecules
- Analysis
 - 1. For each target designate 50 Top scoring molecules as 'hit list'
 - Equivalent to 100K hit list when docking 1 Billion
 - 2. 1% Test, 99% Training Split
 - 3. Construct Model with Test Data
 - Linear Regression
 - 4. Construct receiver operating characteristic curve calculate AUC
 - Molecules that would be in the hit list are 'actives'
 - Molecules that would not be in the true hit list are 'inactives'

* J Comput Aided Mol Des. 2012 Aug;26(8):897-906.

Results with Current Gigadock Warp Settings

Mean Receiver Operator Characteristic for 37 MDUD Targets

- AUC : 0.86
- 8% 'Inactives' \rightarrow ~50% 'hit list'
- Previous work indicates performance improves with number of molecules docked

CADENCE MOLECULAR SCIENCE

Dashed curves are the upper and lower 95% confidence interval

FastROCS Feature Vectors (FRFV) Models

Fraction of Non-Hitlist Molecules Recovered

- MAX
 - AUC:0.86
 - $_{\circ}$ 8% 'Inactives' \rightarrow ~50% 'hit list'
- MODEL Docking Score
 - AUC : 0.89
 - $_{\circ}$ 8% 'Inactives' → ~60% 'hit list'
- 2 Stage MODEL Docking Score
 - AUC:0.91
 - $_{\circ}$ 8% 'Inactives' \rightarrow ~65% 'hit list'

Number of FastROCS Query Poses vs Performance

Average AUC Docking 5M Random Enamine to 37 Target Systems

- FRFV Models work
- 2 Stage FRFV Models work even better

Probability difference in mean AUC is statistically significant

2D Models

Graphsim Fingerprints

- Path (4096)
- Tree (4096)
- Circular (4096)
- MACCS166 (166)
- Number of features in parenthesis
- Feature count matters at scale

 For 10 Billion docking a 1%
 training set size is 100 Million

Simple Feature Counts

- Counts Linear (21)
 - Atom Counts : Heavy, Acceptor, Donor, H, C, N, O, F, P, S, Cl, Br, I
 - Bond Counts : Rotatable, All Bonds, Single, Double, Triple, Aromatic
 - Ring Counts : All Rings, Aromatic
- Counts Partial Quadratic (49)
 - o Atom Counts : Heavy, Acceptor, Donor, H, C, N, O, F, P, S, Cl, Br, I
 - Bond Counts : **Rotatable**, **All Bonds**, Single, Double, Triple, Aromatic
 - Ring Counts : All Rings, Aromatic
- Counts Quadratic (252)
 - Atom Counts : Heavy, Acceptor, Donor, H, C, N, O, F, P, S, Cl, Br, I
 - Bond Counts : Rotatable, All Bonds, Single, Double, Triple, Aromatic
 - Ring Counts : All Rings, Aromatic
- Heavy Acc Don Linear (3)
 - Atom Counts : Heavy, Acceptor, Donor
- Heavy Acc Don Quadratic (9)
 - Atom Count : Heavy, Acceptor, Donor

Bolded values include squared value & cross terms with other squared values

FastROCS Feature Vector Compared to 2D

Combining FastROCS Feature Vectors and 2D

Average Performance Docking 5M Random Enamine to 37 Target Systems

Receiver Operator Characteristic for FRFV + Tree

Fraction of Non-Hitlist Molecules Recovered

Fraction of Non-Hitlist Molecules Recovered

FRFV + Tree \rightarrow Great performance and many features

Next Steps

- Giga scale performance on multiple target systems
- Alternate Models*
- Multistage optimization with >2 stages
- Good 2D fingerprint with less 4K features?
- Hyperparameter optimization
 - e.g., % initial docked, clustering queries

Conclusions

- FastROCS Feature Vectors (FRFV) work
 - Better that choosing the maximum Tanimoto (current Gigadock Warp)
 - Same compute cost as using maximum Tanimoto
- 4K Graphsim Fingerprints are effective
 Many features → More difficult to used in models
- Combining FRFV and 2D \rightarrow better results

Thank You

The End

CADENCE MOLECULAR SCIENCES