Induced-Fit Posing in Orion®

CUP XXII | March 14th, 2023 Hyesu Jang

Drug Discovery Process before Pre-clinical Studies

Hit to Lead (H2L) and Induced-Fit Posing

Induced-Fit Docking (IFD)

Docking software applications developed to account for protein flexibility

Article pubs.acs.org/JC	PLOS COMPUTATIONAL BIOLOGY
Prediction of Protein–Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations	GOPEN ACCESS 💋 PEER-REVIEWED
Richard A. Friesner, ^{\dagger} and B. J. Berne ^{\dagger}	AutoDockFR: Advances in Protein-Ligand Docking with
[†] Department of Chemistry, Columbia University, New York, New York 10027, United States [‡] Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States	Explicitly Specified Binding Site Flexibility
ICTC Journal of Chemical Theory and Computation	
Publication Control of the Induced Fit Docking Problem Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein—Ligand Binding Edward B. Miller, Robert B. Murphy, Daniel Sindhikara, Kenneth W. Borrelli, Matthew J. Grisewood, Fabio Ranalli, Steven L. Dixon, Steven Jerome, Nicholas A. Boyles, Tyler Day, Phani Ghanakota, Sayan Mondal, Salma B. Rafi, Dawn M. Troast, Robert Abel, and Richard A. Friesner*	Flexible CDOCKER: Development and Application of a Pseudo-Explicit Structure-Based Docking Method Within CHARMM Jessica K. Gagnon, Sean M. Law, and Charles L. Brooks III*
1. J. Chem. Theory Comput. 2016, 12, 6, 2990–29 2. Ravindranath P. A.: Forli, S.: Goodsell, D. S.: O	98 son A. L. Sanner M. F. PLoS Comput. Biol. 2015, 11, e1004586-e1004614

- 3. Gagnon, J. K.; Law, S. M.; Brooks, I.; Charles, L. J. Comput. Chem. 2016, 37, 753–762
- 4. J. Chem. Theory Comput. 2021, 17, 2630–2639

Induced-Fit Posing (IFP) in Orion

3-step protocol for the correct prediction of the binding pose of a ligand which requires receptor conformation change

Induced-Fit Posing (IFP) in Orion

3-step protocol for the correct prediction of the binding pose of a ligand which requires receptor conformation change

Orion platform allowed the fast implementation of IFP

- In the Orion platform, workflows (Orion Floes) are comprised of individual compute units (Orion Cubes): Highly reusable, easy to modify and create
- IFP Floe Diagram

Preliminary Results of IFP

The Good, the Bad and the Ugly

Pose RMSD: 0.66 Å

B-factor depiction

The Good, the Bad and the Ugly

 Test set: 10 targets, 36 cross-docks

Target	# cross- docks
CDK2	6
FXa	6
PTP1B	5
BACE1	2
Chk1	2
p38	5
hsp70	1
rpa	2
afaB	2
Thrombin	5

Conclusions and Acknowledgments

Conclusions

- The performance of the early version of IFP is promising
- Many directions for the performance improvement of IFP
 - Proper comparison with the reference xtal structures with high B-factor for retrospective study

...But, is it worth comparing the high b-factor region?

Conclusions

- The performance of the early version of IFP is promising
- Many directions for the performance improvement of IFP
 - Proper comparison with the reference xtal structures with high B-factor for retrospective study
 - Further refinement of stage 2 (MD): Enhanced Sampling
 - Optimizing step 3 scoring function to identify the correct IFP solution
 - Account for tautomeric and ionization state in the active site
- Aiming for a general release in 2023

Acknowledgments

- Itai Leven, Mario Cardozo (Interline Therapeutics)
- Suhani Nagpal, Bing Xie, Christopher Bayly (OpenEye)
- Cloud Ops team @ OpenEye

