How ligands achieve biased signaling at opioid receptors

Joe Paggi, Ron Dror lab, Stanford University

G protein coupled receptors (GPCRs) signal through multiple transducers

G protein

Biased signaling

G protein biased agonist

Always relative to a reference agonist, I'll call these "balanced"

Arrestin biased agonist

Stahl & Bohn, *Biochemistry*, 2022 There is ongoing debate about the importance of bias signaling, as opposed to partial agonism.

Arrestin

Respiratory depression Constipation Tolerance Addiction

Biased agonists favor "biased" receptor conformations

A variety of biophysical experiments support that biased agonists favor distinct receptor conformations.

• Liu et al, Science, 2012. Wingler et al, Cell, 2019. Cong et al, Molecular Cell, 2021.

What are these "biased" conformations? How do agonists favor different conformations?

Experimentally determined structures provide an incomplete picture

µOR bound to arrestin-biased ligand µOR bound to G protein-biased ligand

- Solving an active state structure requires a transducer to be bound
- The conformation of the transducer binding site is largely determined by the transducer

How we study biased signaling using MD simulations

- 1. Simulate receptor with no transducer bound.
- 2. Identify conformations of the transducer coupling interface. Assess their potential to bind with G protein or arrestin.
- 3. Run simulations with agonists with a variety of bias profile and observe which receptor conformations they favor.
- 4. Confirm hypotheses by designing novel agonists or receptor mutations.

Angiotensin receptor (AT₁R) transitions between two active intracellular conformations in simulation

Suomivuori & Latorraca et al, Science, 2020

Alternative conformation disfavors G-protein binding but can couple to arrestin

Suomivuori & Latorraca et₀al, Science, 2020

Arrestin-biased ligands favor alternative conformation, G protein-biased ligands disfavor it

Suomivuori & Latorraca et₁al, Science, 2020

Do these results transfer to opioid receptors?

Deniz Aydin

Article Published: 21 November 2022

Insights into distinct signaling profiles of the μ OR activated by diverse agonists

Qianhui Qu, Weijiao Huang, Deniz Aydin, Joseph M. Paggi, Alpay B. Seven, Haoqing Wang, Soumen Chakraborty, Tao Che, Jeffrey F. DiBerto, Michael J. Robertson, Asuka Inoue, Carl-Mikael Suomivuori, Bryan L. Roth, Susruta Majumdar 2, Ron O. Dror 2, Brian K. Kobilka \boxtimes & Georgios Skiniotis \boxtimes

Nature Chemical Biology (2022) Cite this article

Yianni Laloudakis

Article Open Access Published: 11 March 2023 Molecular mechanism of biased signaling at the kappa opioid receptor

Amal El Daibani, Joseph M. Paggi, Kuglae Kim, Yianni D. Laloudakis, Petr Popov, Sarah M. Bernhard, Brian E. Krumm, Reid H. J. Olsen, Jeffrey Diberto, F. Ivy Carroll, Vsevolod Katritch, Bernhard Wünsch, Ron O. Dror 🗠 & Tao Che

Nature Communications **14**, Article number: 1338 (2023) Cite this article

Agonists studied at µOR

Mitragynine pseudoindoxyl (MP)

G protein biased

Please don't take kratom because of this talk, it probably won't kill you, but it isn't good for you...

DAMGO

Balanced

Lofentanil

Arrestin biased

We observe the canonical and alternative states at μOR Occupancy of states explains bias profile of agonists

Statistical testing: Ran multiple independent simulations (6 for μ OR, 10 for kOR), compute average value for each simulation, check for significance using t-test or Wilcoxon rank test.

Agonists studied at kOR

G protein biased

- Nalfurafine is approved in Japan since 2009 for use as an antipruritic, only one!
- Unlike other kOR agonists, Nalfurafine does not induce dysphoria at therapeutic doses
- Believed to be at least in part due to G protein bias

Brust et al, Science Signaling, 2016. Nakoa et al, J Pharmacy Sci, 2016

Balanced

Arrestin biased

The balanced agonist already maxes out canonical state. How can you get G protein bias?

Canonical

20 \mathbf{O}

Nalfurafine: G protein biased U50,488: Balanced WMS-X600: Arrestin biased

At kOR, we observe a third receptor conformation: the "occluded state"

The occluded state presents an electrostatic barrier to arrestin coupling

G protein

Arrestin

Receptors

AT1R, μ OR, kOR AT1R, μ OR, kOR

2

kOR

1. What are these "biased" conformations?

2. How do agonists favor different conformations?

- What are the differences in protein–ligand interactions?

• How are these differences transmitted through the receptor?

Before we get lost in the trees...

• I'm only going to share a subset of the results here

- See our papers for more details!
- We validate much of our proposed mechanism with mutagenesis experiments

1. Multiple layers of abstraction, things get confusing if you stay too low

- Transducer site conformations
- Allosteric pathways
- Direct protein–ligand interactions

2. MD is a powerful tool

- Subtle differences in ligands can have large and hard to predict impacts on binding pocket conformations
- Even for major differences between ligands, the implications on protein dynamics are not clear from structures alone

Most importantly, a rigid body rotation connects the binding pocket to the transducer binding site

Lofentanil stabilizes a polar network holding Y7.43 inwards MP disrupts this polar network

Lofentanil: Arrestin biased

Representative MD frames

MP: G protein biased

Nalfurafine has a similar effect as MP, but through a different mechanism

MD frames

Extracellular view

Nalfurafine: G protein biased U50,488: Balanced WMS-X600: Arrestin biased

Tryptophan pathway

Transducer

Canonical

Alternative

Vertical displacement of tryptophan explains arrestin-bias of WMS-X600

Initial docked poses

- WMS-X600 and U50,488

*Nalfurafine not significantly different than others

Mutating this tryptophan to an alanine removes bias between

• Nalfurafine becomes even more G protein biased. Opportunity!

MD frame

Acknowledgements

 Ron Dror 	 Qianhu
 Deniz Aydin 	 Weijiac
 Yianni Laloudakis 	 Alpay E
 Carl-Mikael Suomivuori 	 Susruta
 Naomi Latorraca 	Brian K
 Stephan Eismann 	 Georgi
 Matthew King 	 Haoqin
 Scott Hollingsworth 	 Soume

- Michael J. Robertson
- Asuka Inoue
- Bryan L. Roth

- ui Qu
- ao Huang
- **B. Seven**
- ita Majumdar
- K. Kobilka
- gios Skiniotis
- ng Wang
- en Chakraborty

- Amal El Daibani
- Kuglae Kim
- Tao Che
- Petr Popov
- Sarah M. Bernhard
- Brian E. Krumm
- Reid H. J. Olsen
- Jeffrey F. DiBerto
- Ivy Carroll
- Vsevolod Katritch
- Bernhard Wünsch

