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modeling automation
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How can computational BIOPHYSICS and machine learning 


ADVANCE DISCOVERY AND TREATMENT in the era of CANCER genomics?
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WE collaborate broadly to advance the state of drug discovery

choderalab 
(algorithms and open source software)

Diamond Light Source / XChem

open source software  
development initiatives

data generators, 
community challenges,  

and resources

industry 
collaborations

Folding@home

academia

open science / open source softwareIP-generating collaborations

COVID Moonshot

OpenMM



http://openmm.org/
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openmm architecture makes development simple

OpenMM also has bindings for C++, C, and FORTRAN
Extensibility is built into every layer of the architecture as a fundamental design goal. A

guiding philosophy is that users should be able to implement new features as easily as possible,
by writing as little code as possible. Those features should then work on all types of hardware,
including both CPUs and GPUs, and have good performance on all of them. Finally, the devel-
oper of a feature should be able to package and distribute their code independently, without
needing the approval or participation of the core OpenMM development team.

The highest layer of the architecture is based on the Python scripting language. Users can
easily extend it by writing their own Python code to implement the algorithms of their choice.
A wide range of simulation protocols, sampling methods, etc. can be implemented in this way,
often with only a few lines of code.

The next layer down defines the calculations that are tied together through Python script-
ing. This layer includes many classes for creating “custom” forces and integrators. These clas-
ses provide a simple but powerful mechanism for extensibility. The user provides one or more
mathematical expressions to describe the calculation to be done. For example, they might give
an expression for the interaction energy of a pair of particles as a function of the distance
between them. The expression is parsed and analyzed, and just-in-time compilation is used to
generate an efficient implementation of the code for calculating that interaction [15]. This
allows users to easily define a huge variety of interactions and integration algorithms. They can
then be used on any supported type of hardware, and involve little or no loss in performance.

At the lowest layer, OpenMM is based on a plugin mechanism. Calculations are defined
by “computational kernels”. A plugin may define new kernels for doing new types of calcula-
tions, or alternatively it may provide new implementations of existing kernels, for example to
support a new type of hardware. Plugins are dynamically discovered and loaded at runtime.
Each one is packaged as a file that can be distributed separately from the rest of OpenMM and
installed by any user.

Another unique feature of OpenMM is its support for multiple input pipelines. Before a
molecular system can be simulated, it first must be modelled. This is sometimes a complex
process involving such steps as combining multiple molecules into a single file, building miss-
ing loops, selecting a force field, and parametrizing small molecules. Typically, each simulation
package provides its own tools for doing this. They often differ in significant ways, such as
what force fields are available.

OpenMM does include modelling tools, but it also can directly read the file formats used by
Amber [16], CHARMM [17], Gromacs [18], and Desmond [19]. A user can prepare their

Fig 1. Architecture of OpenMM.

https://doi.org/10.1371/journal.pcbi.1005659.g001

OpenMM 7
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openmm is used by researchers all over the world

Geographic statistics from http://simtk.org 
 

http://openmm.org

http://github.com/choderalab/openmmtools
OpenMMTools

OpenMM

http://simtk.org
http://omnia.md
http://github.com/choderalab/openmmtools
http://openmm.org


Openmm can be used as a library to enable 
applications to integrate physical modeling

openmmtools

isolde perses iapetus

general GPU-accelerated MD simulation engine

(C++/CUDA/OpenCL with Python API)

high-level simulation algorithms, alchemical tools

(Python to enable rapid development)

targeted domain-specific applications

(Python, C++, C, or Fortran)

CORE

ALGORITHMS

APPLICATIONS



Designing real preclinical drug candidates 

is challenging

Target Candidate Profile (TCP) for oral SARS-CoV-2 main viral protease (Mpro) inhibitor
Property Target range Rationale
protease assay IC50 < 10 nM Extrapolation from other anti-viral programs
viral replication assay EC50 < 5 µM Suppression of virus at achievable blood levels
plaque reduction assay EC50 < 5 µM Suppression of virus at achievable blood levels
route of administration oral bid/tid - compromise PK for potency if pharmacodynamic effect achieved
solubility
 > 5 mg/mL
 Aim for biopharmaceutical class 1 assuming <= 750 mg dose

half-life > 8 h (human) est from rat and dog Assume PK/PD requires continuous cover over plaque inhibition for 24 h max bid dosing

safety

Only reversible and monitorable toxicities 
No significant DDI - clean in 5 CYP450 isoforms 
hERG and NaV1.5 IC50 > 50 µM 
No significant change in QTc 
Ames negative 
No mutagenicity or teratogenicity risk

No significant toxicological delays to development

DDI aims to deal with co-morbidities / therapies, 
cardiac safety for COVID-19 risk profile 
cardiac safety for COVID-19 risk profile 
Low carcinogenicity risk reduces delays in manufacturing 
Patient group will include significant proportion of women of childbearing age

Ed Griffen 
Medchemica

https://covid.postera.ai/covid 

https://covid.postera.ai/covid


to get there, drug design involves making a lot of decisions 
about which molecules will achieve certain objectives

Does it inhibit the target? How does it bind?
Does it work in cells?
Does it have a chance of working in humans?

Does it kill the virus in cells?

Could it cause bad side effects?

Can oral dosing deliver sufficient drug? 
Does it actually work against the disease?

assay purpose
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Much of the time is spent in predicting compounds 
that will improve or maintain potency



Structural data is now an abundant 
resource for drug discovery
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AlphaFold2-like methods and 

comparative modeling can generate


structural models for many more targets



alchemical free energy calculations have proven to be a 
useful way to exploit structural data to predict affinities

∆Gbind

PLP + L

PøP + ø
restraint imposition discharging steric decoupling noninteracting

Includes all contributions from enthalpy and entropy of binding to a flexible receptor

simulations of alchemical intermediates with attenuated interactions

Pioneering work from many: McCammon, van Gunsteren, Kollman, Jorgensen, Chipot, Roux, Boresch, Fujitani, Pande, Shirts, Swope, Christ, Mobley, Schrödinger, and many more
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https://registry.opendata.aws/foldingathome-covid19/ 

https://covid.molssi.org//org-contributions/#folding--home 

We’ve run lots of free energy calculations

https://registry.opendata.aws/foldingathome-covid19/
https://covid.molssi.org//org-contributions/#folding--home


We can leverage structure to make decisions between 
many related synthetically feasible analogues

COVID Moonshot: [Moonshot] [Fragalysis] [Dashboard]

Can we engage S4 from this 5,000-compound virtual synthetic library varying R3?

top compounds from free energy calculations

parent compound

Top free energy calculation compounds and experimental affinity measurements:

http://postera.ai/covid
https://fragalysis.diamond.ac.uk/viewer/react/projects/765/559
https://fah-public-data-covid19-moonshot-sprints.s3.us-east-2.amazonaws.com/dashboards/sprint-5-dimer/sprint-5-dimer-x11498-dimer-neutral/index.html


Alchemical free energy calculations have a 
broad domain of applicability in drug discovery

driving affinity / potency

optimizing thermostability

Gapsys, Michielssens, Seeliger, and de Groot. Angew Chem 55:7364, 2016

https://doi.org/10.1002/anie.201510054 

driving selectivity

Moraca, Negri, de Olivera, Abel JCIM 2019 
https://doi.org/10.1021/acs.jcim.9b00106 

Aldeghi et al. JACS 139:946, 2017. 
https://doi.org/10.1021/jacs.6b11467

predicting clinical drug resistance/sensitivity
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Rec.. Furin-like Rec.. GF_recep_IV Pkinase_Tyr
Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang.  
Communications Biology 1:70, 2018 
https://doi.org/10.1038/s42003-018-0075-x 

Aldeghi, Gapsys, de Groot. ACS Central Science 4:1708, 2018 

https://doi.org/10.1021/acscentsci.8b00717

Schindler, Baumann, Blum et al. JCIM 11:5457, 2020 
https://doi.org/10.1021/acs.jcim.0c00900 


https://doi.org/10.1002/anie.201510054
https://doi.org/10.1021/acs.jcim.9b00106
https://doi.org/10.1021/jacs.6b11467
https://doi.org/10.1038/s42003-018-0075-x
https://doi.org/10.1021/acscentsci.8b00717
https://doi.org/10.1021/acs.jcim.0c00900


partition coefficients (logP, logD) and permeabilities


porin permeation


crystal polymorphs, etc.

structure-enabled ADME/Tox targets


hERG CYP3A4

…AND HOLD THE POTENTIAL FOR Even broader 
applicability as more structural data emerges



"Knowledge is a treasure, but practice is the key to it.”

- Emil Fischer, the father of synthetic organic chemistry

Obligatory dead person quote





A deep understanding of the fundamental principles 

makes learning a hell of a lot easier

Figure adapted from Zhou Z 
arXiv:1706.09916

molecule bond atom

predict 
properties

Graph Inference on MoLEcular Topology
preprint: https://arxiv.org/abs/1909.07903  
code: http://github.com/choderalab/gimlet  

Learns electronegativity (ei) and hardness (si)

subject to fixed charge sum constraint:

none of these methods achieved satisfactory results when used with our model (with no constraint,
RMSE is around 0.280 e.) We instead adopted a trick proposed by Gilson et al. [7] and use our model
to instead predict the first- and second-order derivatives of the potential energy E w.r.t. the atomic
partial charge, which happens to correspond to the electronegativity ei and hardness si of the atom in
its chemical environment.

ei ⌘
@E

@qi
, si ⌘

@E2

@2qi
. (13)

This problem could thus be formulated as follows: we use the graph net to make a prediction of the
electronegativity and hardness, {êi, ŝi}, and the partial charges could be yielded by minimizing the
second-order Taylor expansion of the potential energy contributed by atomic charges:

{q̂i} = argmin
qi

X

i

êiqi +
1

2
ŝiq

2
i , (14)

subject to 12. Fortunately, using Lagrange multipliers, the solution to 14 could be given analytically
by:

q̂i = �eis
�1
i + s�1

i

Q+
P

i eis
�1
iP

j s
�1
j

, (15)

whose Jacobian and Hessian are trivially easy to calculate. As a result, the prediction of {êi, ŝi}
could be optimized end-to-end using backpropagation.

3 Results and Discussion

Element R2 RMSE(e) # Samples
C 0.99320.99330.9930 0.02170.02190.0215 116864
N 0.97970.98050.9789 0.03700.03760.0364 19490
O 0.97130.97250.9700 0.03420.03480.0336 21503
S 0.99350.99420.9928 0.05240.05510.0496 2955
P 0.85820.99430.7265 0.06690.09500.0339 341
F 0.95170.95770.9458 0.01320.01380.0126 1967
Cl 0.77810.80490.7516 0.02530.02700.0236 1215
Br 0.81660.84580.7878 0.02330.02520.0214 572
I 0.28190.6376�0.0178 0.19480.20170.1874 105
H 0.97440.97500.9739 0.01440.01450.0142 134799

Overall 0.99360.99370.9935 0.02230.02250.0221 299811

Figure 1 (Left): Predicted vs true partial charge of atoms in held-out test set color-coded by
element types. A kernel density estimate of the distribution of charges for each element are plotted
on the axes.
Table 1 (Right): R2 and RMSE of the prediction and number of data points in held-out test
set. The 95% confidence interval is also annotated.

We tested our model on a dataset consisting of 350 259 molecules in ChEMBL database, selected
by Bleiziffer et al. [2] The reference charges are also calculated by Bleiziffer et al. [2] using DFT
with dielectric permittivity ✏ = 4. We randomly split the training and test set with 80:20 ratio.
Random search on a limited hyperparameter space was conducted for hyperparameter tuning, with
the hyperparameter set with highest 5-fold cross validation results chosen. On the test set, the error
between the true and predicted value, RMSE ⇡ 0.02 e, is roughly within the difference between
DFT and AM1-BCC calculations, whereas it takes around 0.03 seconds to calculate the charges for a
single molecule, which is approximately 500 times faster than AM1-BCC methods. We therefore
argue that such method has the potential to replace AM1-BCC in calculating the charges for small
molecules for MD simulation. Moreover, within the dataset (where the largest molecule has 63
atoms), we observed no positive correlation between the prediction error and the number of atoms in
the molecule, indicating potential scalability of this model.

4

where de is the hidden dimension of edges and du is the hidden dimension of global attributes. In
propagation stage, the framework we adopted follows a formalism by Battaglia et al,[1] where, in
each round of message passing, the attributes of nodes, edges, and the graph as a whole, v, e, and u
are updated by trainable functions in the following order:

e(t+1)
k = �e

(e(t)k ,
X

i2N e
k

vi,u
(t)
), (edge update) (4)

ē(t+1)
i = ⇢e!v

(E(t+1)
i ), (edge to node aggregate) (5)

v(t+1)
i = �v

(ē(t+1)
i ,v(t)

i ,u(t)
), (node update) (6)

ē(t+1)
= ⇢e!u

(E(t+1)
), (edge to global aggregate) (7)

v̄(t+1)
= ⇢v!u

(V (t)
), (node to global aggregate) (8)

u(t+1)
= �u

(ē(t+1), v̄(t+1),u(t)
), (global update) (9)

where Ei = {ek, k 2 N v
i } is the set of attributes of edges connected to a specific node, E is the set of

attributes of all edges, V is the set of attributes of all nodes, and N v and N e denote the set of indices
of entities connected to a certain node or a certain edge, respectively. �e, �v, and �u are update
functions that take the environment of the an entity as input and update the attribute of the entity,
which could be stateful (Recurrent Neural Networks) or not; ⇢e!v, ⇢e!u, and ⇢v!u are aggregate
functions that aggregate the attributes of multiple entities into an aggregated attribute which shares
the same dimension with each entity. Although in this work, the definition of edges is limited to that
connect exactly two nodes (bonds connecting two atoms), we could expand the notion of edges to
include hyperedges, to connect more than two nodes (angles and torsions).

Finally, after a designated number of rounds of propagation (message passing), in the readout stage,
t = T , a readout function fr that takes the entire trajectory as input summarizes the information and
yields the final output of desired dimensionality,

ŷ = fr
({{v(t), e(t),u(t)}, t = 1, 2, ..., T}). (10)

2.3 Graph Batching

The number of nodes (atoms) in molecule graphs varies greatly and is usually much smaller than,
say, the number of individuals in a social graph. For efficient backpropagation, especially on GPUs,
molecule graphs need to be combined into larger ones, rather than partitioned or padded to the same
size. This could be achieved by concatenating the attribute vectors of graphs and merging their
adjacency matrices of graphs as

eAkl =

8
<

:
({A}j)k� P

m<j
|Vm|,l�

P
m<j

|Vm|,where
P
m<j

|Vm|  k, l <
P

m<j+1
|Vm|;

0, elsewhere.
(11)

After choosing an appropriate batch size, which is the first dimension of eV and eA, we repeat this
process until another addition of small graph into the batch would result in

P
i
|Vi| greater than the

batch size, upon which the adjacency and the concatenated attributes will be padded to the batch size
and another batch will be initialized.

2.4 Determination of atomic partial charges respecting a net charge constraint

One of the challenges in predicting atomic partial charges is to satisfy the constraint that their sum
should equal to the total charge of the molecule:

X

i

q̂i =
X

i

qi = Q, (12)

where Q is the total (net) charge of the molecule, which could be positive, negative, or zero. Naively,
we could either not explicitly encode this constraint and let the model "learn" it, or, as in Bleiziffer et
al. [2], redistribute charge necessary to cancel any "excess charge" evenly to all atoms. Experimentally,
none of these methods achieved satisfactory results when used with our model (with no constraint,

3

YUANQING 
WANG

control experiment: 

direct prediction of charges: RMSE 0.2800 e

https://arxiv.org/abs/1909.07903
http://github.com/choderalab/gimlet


Where else can we apply this principle?

* start with a fundamental physical or statistical mechanical model

* identify areas where a poor approximation has been inserted

* introduce a flexible, learnable model

* train with lots of (potentially synthetic) data




Drug discovery is not 

a big data problem

DALL-E 2 was trained on a dataset of 650 million images 


GPT-3 was trained on a corpus of 22.5 billion pages of text (45 TB) 


Typical drug discovery programs make and test ~2000 compounds


Trying to use public datasets ingested from publications with heterogeneous 
methods is like “dumpster diving for data”


We need to:

* Develop extremely data efficient machine learning methods or leverage 

synthetic data (e.g. quantum chemistry) where possible

* Find a way to make data from different discovery programs  

fit into the same model (pool all data together)

vs



free energy calculations (and much of comp chem) 
currently relies on molecular mechanics force fields

Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011

Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011

typical class I molecular mechanics force field



force fields have traditionally been 
HEROIC products of HUMAN effort

experimental data

quantum chemistry


keen chemical intuition

a parameter set we

desperately hope someone


actually uses

heroic effort by graduate

students and postdocs



proteins 

post-translational modifications

small molecules 

nucleic acids 

lipids

carbohydrates

water

ions

Amber20 recommendations

Quickly adds up to >100 human-years 

Intended to be compatible, but not co-parameterized 
Significant effort is required to extend to new areas  
(e.g. covalent inhibitors, bio-inspired polymers, etc.) 
Nobody is going to want to refit this based on some new data


How can we bring this problem into the modern era? 

force fields have traditionally been 
HEROIC products of HUMAN effort



As drug discovery explores new parts of 
chemical space, how can forcefields keep up?

to discriminate single vs. double p—p bonds in compounds 24
and 25 in Figure 1.

Bond type information (such as bond orders) can be very
helpful in classifying and discriminating among similar chemical
environments. For various reasons, many force fields, including
AMBER, only apply atom type information, and do not separately
name or keep track of bond orders or types. To be consistent with
the existing AMBER force fields and codes, we have used the sets
of identical atom type pairs described above (cc/cd, cp/cq, ce/cf,
etc.) instead of explicit bond orders to discriminate conjugated/
aromatic single and double bonds. It is notable that although our
scheme works for most of the molecules, there are still some
special molecules that cannot be properly handled. We think that
most of the failures happen to conjugated/aromatic rings attached
to large aliphatic rings [10 ! 4n (n " 0, 1, 2) membered rings].
Figure 1(c) lists two examples of the kind of molecules for which
our current scheme would fail. In our experience, such failures are
only rarely encountered, but future extensions of the GAFF force
field will have to consider these sorts of molecules.

We have developed an atom-type perception program, which is
part of the antechamber suite of Amber, to assign the atom types
described here, based only on an input geometry. Details of the
algorithms involved will be presented in a separate article.19

Charges

To accurately fit conformational and nonbonded energies in a
transferable fashion, one should choose consistent charge ap-
proach. The restrained electrostatic potential (RESP)16,20 at HF/6-
31G* is the default charge approach applied in the Amber protein
force fields. Although RESP is expensive compared to empirical
schemes such as Gasteiger charges, it has many desirable features,
and allows one to use fewer torsional terms than might otherwise
be required.8 It has worked well in tests of small molecules21,22 as
well as proteins. This is the default charge scheme in GAFF
parameterization. Unfortunately, the fact that this charge scheme
needs to run ab initio optimization at the HF/6-31G* level has
prevented it from being widely used in handling large numbers of
molecules. In this situation, one may apply an alternative charge
scheme called AM1-BCC (bond charge correction),23,24 which is
much cheaper than HF/6-31G* RESP. The basic idea of AM1-
BCC is to first carry out a semiempirical AM1 calculation to get
Mulliken charges, followed by a bond charge correction scheme to
obtain results that are compatible with RESP charges. We use the
BCC parameters derived by Jakalian et al.,24 which are designed to
make AM1-BCC charges match the electrostatic potential at the
HF/6-31G* level.

Figure 1. Example molecules that elucidate the definitions of atom
types introduced in GAFF. (a) basic atom types; (b) special atom
types; (c) examples of failed molecules that cannot be properly han-
dled with our atom type scheme. In I(b), unmarked aromatic carbon in
No. 11–15 have an atom type of “ca”; in I(c), atom types that causes
failure are marked with bold italic font.
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only rarely encountered, but future extensions of the GAFF force
field will have to consider these sorts of molecules.
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schemes such as Gasteiger charges, it has many desirable features,
and allows one to use fewer torsional terms than might otherwise
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well as proteins. This is the default charge scheme in GAFF
parameterization. Unfortunately, the fact that this charge scheme
needs to run ab initio optimization at the HF/6-31G* level has
prevented it from being widely used in handling large numbers of
molecules. In this situation, one may apply an alternative charge
scheme called AM1-BCC (bond charge correction),23,24 which is
much cheaper than HF/6-31G* RESP. The basic idea of AM1-
BCC is to first carry out a semiempirical AM1 calculation to get
Mulliken charges, followed by a bond charge correction scheme to
obtain results that are compatible with RESP charges. We use the
BCC parameters derived by Jakalian et al.,24 which are designed to
make AM1-BCC charges match the electrostatic potential at the
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Wang J, Wolf RM, Caldwell JW, Kollman PA, and Case DA. J Comput Chem 25:1157, 2004.

The Generalized Amber Forcefield (GAFF) only understands this space of chemistries:

GAFF 1 was finished in 1999, still awaiting GAFF 2 completion
Extension to new chemical space is nontrivial

Parameter fitting code was never released

Atom types have introduced numerous errors



espaloma: extensible surrogate potential of ab initio 
learned and optimized by message-passing algorithm

preprint: https://arxiv.org/abs/2010.01196   
code: https://github.com/choderalab/espaloma 

JOSH FASS
YUANQING 

WANG

Figure 1. End-to-end di�erentiable molecular mechanics parameter assignment. Espaloma (Extendable Surrogate
Potential Optimized by Message-passing Algorithms) is a modular approach for directly computing molecular mechanics
force �eld parameters �FF from a chemical graph G such as a small molecule or biopolymer via a process that is fully dif-
ferentiable in themodel parameters�NN. In Stage 1, a graph net is used to generate continuous latent atom embeddings
describing local chemical environments from the chemical graph. In Stage 2, these atom embeddings are transformed
into feature vectors that preserve appropriate symmetries for atom, bond, angle, and proper/improper torsion inference
via Janossy pooling. In Stage 3, molecular mechanics parameters are directly predicted from these feature vectors us-
ing feed-forward neural nets. This process is performed once per molecular species, allowing the potential energy to
be rapidly computed using standard molecular mechanics implementations thereafter. This approach can be easily ex-
tended to incorporate additional molecular mechanics parameter classes (such as parameters for a charge-equilibration
model [1], point polarizabilities, or valence coupling terms) in a modular manner.

• First, a set of rules are used to classify atoms into atom types that must encode any information about40

the chemical environment that will be used by subsequent steps.41

• Next, bond, angle, and torsion types are determined by the composing atom types.42

• Finally, the parameters attached to atoms, bonds, angles, and torsions are assigned according to a43

table of these parameter classes.44

As a result, atoms, bonds, angles, or torsions with distinct chemical environments that happen to fall45

into the same expert-derived category are forced to share a same set of parameters, potentially leading to46

poor accuracy. Furthermore, the explosion of discrete parameter classes describing equivalent chemical47

environments not only poses signi�cant challenges to extending the space of atom types [17], optimizing48

these independently has the potential to compromise generalizabilty and lead to over�tting. Even with49

modern optimization frameworks [18–20] and su�cient data, parameter optimization is only possible in50

the continuous parameter space de�ned by these �xed atom types, while the mixed discrete-continuous51

optimization problem—jointly optimizing types and parameters—is intractable.52

Here, we demonstrate a the potential for a continuous alternative to discrete atom typing schemes53

that permits end-to-end di�erentiable optimization of both “typing” and parameter assignment, allowing the54

entire force �eld to be built, extended, and applied using standard machine learning frameworks utilizing55

automatic di�erentiation such as TensorFlow, PyTorch, or JAX (Figure 1). We hypothesize that graph neural56

networks (graph nets) have at least equivalent expressiveness with expert-derived typing rules, with the57

advantage of being able to smoothly interpolate between representations of chemical environments. We58

�rst provide experimental evidence of this hypothesis by showing that, with acceptable errors:59
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https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma


espaloma outperforms current force fields in QM accuracy 
and can be easily trained for heterogeneous systems

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma YUANQING WANG

Tyk2 from OpenFF benchmark set

espaloma joint model


+ TIP3P water

Tyk2 benchmark doi: https://doi.org/10.1021/ja512751q 

https://arxiv.org/abs/2010.01196
http://github.com/choderalab/espaloma
https://doi.org/10.1021/ja512751q


Eliminating discrete types appears to significantly 

improve accuracy in free energy calculations

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma

free energy calculations with http://github.com/choderalab/perses 

Yuanqing

Wang

Hannah 
bruce 

macdonald

Dominic 
Rufa

Ivy 

Zhang

Iván

pulido

Mike

Henry

OpenFF 1.2.0 small molecule

Amber ff14SB protein


TIP3P water

espaloma “joint” 0.2.2 small molecule

Amber ff14SB protein


TIP3P water

https://arxiv.org/abs/2010.01196
http://github.com/choderalab/espaloma
http://github.com/choderalab/perses


CAN WE change practice in structure-enabled drug 
discovery by leveraging data we generate?

2023

2025

week 1 week 2

designs/

predictions

synthesis new data
designs/


predictions
synthesis new data

using published force field model using the same published force field model! 
we haven’t learned anything from the data

week 1 week 2

synthesis new data
designs/


predictions

2.0

synthesis

using force field model

built from public + private data

using new model tuned to target 
from first week’s data

build model 2.0!
designs/


predictions

1.0



Can we learn to fit experimental data 

as well?

JOSH FASS
YUANQING 

WANG

preprint: https://arxiv.org/abs/2010.01196   
code: https://github.com/choderalab/espaloma 

Figure 4. Graph nets can be trained to emit implicit solvent model parameters that allow �tting to experimental
hydration free energies within a restricted subset of the FreeSolv database. This �gure reports on the performance
of �tting to experimental hydration free energies on the n = 300 subset of molecules in the FreeSolv database containing
only the elements carbon, hydrogen, and oxygen. Mean ± standard deviation of the training and validation set perfor-
mance across 10-fold cross-validation are depicted as solid lines and shaded bands. A dashed horizontal line indicates
the RMSE between experiment and the FreeSolv reference calculations (in explicit solvent, using GAFF).

Rather than binning atomic environments with similar e�ects on �Gsolv into discrete collections, we pro-301

pose to de�ne a function that directly emits parameters depending on chemical environment—namely a302

graph net.303

Putting these steps together, it is possible express a hydration free energy prediction as a di�erentiable304

function of graph-net parameters using the following procedure:305

1. compute per-atom parameters by applying a graph-net to a molecular graph, reading out node-level306

attributes,307

2. pass these per-atom parameters to an implicit solvent model,308

3. compute vacuumô solvent works wi for a collection of cached con�guration samples xi,309

4. compute a free energy estimate using the vector of works w.310

Once a simulation-based estimator of the desired experimental quantity is expressed as a di�erentiable311

function of graph net parameters, the whole estimator (including the chemical-perception aspects of the312

force �eld) becomes amenable to gradient-based �tting. We demonstrate this in Figure 4, where a graph313

net is trained to emit per-particle parameters for an implicit solvent model to maximize �t to experimental314

values, for a restricted subset of the FreeSolv dataset.315

In a similar way, more sophisticated, lower-variance estimators based on importance-weighting can be316

used to compute free energies and other equilibrium observables—and their derivatives with respect to317

force �eld parameters—assuming access to cached equilibrium samples [74, 75]. We emphasize that any318

estimator of physical properties that exposes derivatives of the estimate with respect to simulation param-319

eters can in principle be used with this approach.320
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experimental hydration  
free energies from FreeSolv  
https://github.com/MobleyLab/FreeSolv 

OBC2 GBSA FreeSolv RMSE

loss function:
<latexit sha1_base64="1b+7sT2sp+uPZ8sHLqmu9B64cVc=">AAACWXicbVFNaxsxFNRum8R1v9zm2IuoKaSHmt2Qkl4CoS2kh2JcqJOAtV608ltbRNIu0ttSI/ZP5hAo+Ss9VHZMSZMOCIaZN+hpVNRKOkySX1H84OHW9k7nUffxk6fPnvdevDx1VWMFjEWlKntecAdKGhijRAXntQWuCwVnxcWnlX/2A6yTlfmOyxoyzedGllJwDFLeq7/usdFC5n44bN/SI8pco3NvjtJ2OqSstFx4yhSUOKHsMyjk9CQ3tyPv/upTpjkurPbws25zQ5mV8wVm0/3WMyfnmucm8LzXTwbJGvQ+STekTzYY5b1LNqtEo8GgUNy5SZrUmHluUQoFbZc1DmouLvgcJoEarsFlft1MS98EZUbLyoZjkK7V2wnPtXNLXYTJ1fLurrcS/+dNGiw/ZF6aukEw4uaislEUK7qqmc6kBYFqGQgXVoZdqVjwUCeGz+iGEtK7T75PTvcH6ftB8u2gf/xxU0eHvCKvyR5JySE5Jl/IiIyJIFfkd7QVbUfXcRR34u7NaBxtMrvkH8S7fwC8XLLU</latexit>

L(�NN ) =
NX

n=1

[�Gn(�NN )��Gexp
n ]2

�2
n

Here, ΔG estimated via one-step free energy perturbation,

but can easily differentiate properties through MBAR

https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma
https://github.com/MobleyLab/FreeSolv


Why should we be stuck with a physical model 
that catered to the capabilities of a pdp-11?

Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011

Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011

typical class I molecular mechanics force field

DEC PDP-11

~45 years old

shitty Taylor series

truncated at lowest order

crappy Fourier series

truncated at n=6

don’t even get me 

started on this fucker



Hwang et al. (1994) http://doi.org/10.1021/ja00085a036 

We could go to class II force fields…

It’s certainly easy to do now

But can we do a better job of modeling true many-body local valence terms?

http://doi.org/10.1021/ja00085a036


a new generation of quantum machine learning (QML) 
potentials provide significantly more flexibility in 

functional form, though at much greater cost

OLEXANDR

ISAYEV

ADRIAN

ROITBERG

Smith, Isayev, Roitberg. Chemical Science 8:3192, 2017. 
http://doi.org/10.1039/c6sc05720a 

ANI family of quantum machine learning (QML) potentials

radial and angular features deep neural network for each atom excellent agreement with DFT

http://xlink.rsc.org/?DOI=c6sc05720a


ANI Deep Tensor Networks Tensor Field Networks PotentialNet

The ANI class of models uses distance- and angle-based features [http://doi.org/10.1039/c6sc05720a]. 

Deep Tensor Networks and SchNet use distance-based features for continuous convolutions [https://doi.org/10.1038/ncomms13890]. 

Tensor Field Networks and Clebsch-Gordon nets use spherical harmonics [https://arxiv.org/abs/1802.08219; https://bit.ly/2SRVS67]. 

PotentialNet uses a graph convolutional network augmented by distance-dependent edges [https://doi.org/10.1021/acscentsci.8b00507].

Qml potentials are seeing rapid evolution 
in architectures

http://doi.org/10.1039/c6sc05720a
https://doi.org/10.1038/ncomms13890
https://arxiv.org/abs/1802.08219
https://bit.ly/2SRVS67
https://doi.org/10.1021/acscentsci.8b00507


Hybrid quantum machine learning / molecular mechanics 
(QML/MM) SIMULATIONS are most feasible in the near term

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/qmlify



We can assess how well QML/MM free energy calculations 
might perform through a perturbative correction

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/qmlify



Hybrid quantum machine learning / molecular mechanics 
(QML/MM) post-processing can improve accuracy

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/qmlify



Hybrid quantum machine learning / molecular mechanics 
(QML/MM) free energy calculations cut error in half

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/qmlify



Hybrid quantum machine learning / molecular mechanics 
(QML/MM) post-processing can improve accuracy

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/qmlify



computational bottlenecks in current qml 
models can be sped up with custom gpu kernels

atomic

coordinates

 NN

computation

energy/force

accumulation

feature 

computation

We can speed this up with 
OpenMM GPU kernels 


using common pairlists, etc. 
(e.g. for ANI models)

TensorFlow/PyTorch do this 
efficiently, and hardware will 
keep getting better for this step

tensor cores



NNPOps library 
https://github.com/openmm/nnpops

* CUDA/CPU accelerated kernels

* API for inclusion in MD engines

* Ops wrappers for ML frameworks 

(PyTorch, TensorFlow, JAX)

* Community-driven, package agnostic

computational bottlenecks in current qml 
models can be sped up with custom gpu kernels

(~2.5x slower than GPU MD right now, but need 2x smaller timestep)

model distillation will become important in building single models


that are efficient on hardware
paper: https://arxiv.org/abs/2201.08110 
code: https://github.com/openmm/nnpops 

PDB ID # res # heavy atoms
OpenMM  
ns/day 

(4 fs timestep)

TorchANI 
QML/MM ns/day 


(2 fs timestep)

OpenMM 
QML/MM* ns/day

(2 fs timestep)

3BE9 328 48 436 10.4 96.5 / 50.8

2P95 286 50 430 7.93 96.8 / 49.8

1HPO 198 64 547 9.12 101 / 44.6

1AJV 198 75 666 9.19 101 / 40.7

* ANI ensemble size:  1 / 8

https://github.com/openmm/nnpops
https://arxiv.org/abs/2201.08110
https://github.com/openmm/nnpops


Openmm 8 will make QML/MM 
simulations incredibly easy

https://github.com/openmm/openmm-ml 

OpenMM 8 was just released!

https://github.com/openmm/openmm-ml


Why do we need mm at all?

ANI2x

Can we just use ML force fields for everything?

We can finally be free of the hegemony of bonds!



Potentials are free of singularities, so simple linear alchemical potentials

can robustly compute alchemical free energies

Simple restraints can be used when we need to 

enforce specific chemical species

JOSH FASS
MARCUS

WIEDER

preprint: https://doi.org/10.1101/2020.10.24.353318  
code: https://github.com/choderalab/neutromeratio 

ANI-2x 

Pure quantum machine learning (QML) potentials can be used 
to compute free energy differences between chemical species

https://doi.org/10.1101/2020.10.24.353318
https://github.com/choderalab/neutromeratio


statistical mechanics is essential in tautomer ratios.

Even in vacuum, only summing over minima introduces huge errors.
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Pure quantum machine learning (QML) potentials can be 
tuned/retrained by free energies, regularized by QM data

preprint: https://doi.org/10.1101/2020.10.24.353318
code: https://github.com/choderalab/neutromeratio 

test set performance

Regularization by QM data

training / validation optimization

Fast on-the-fly reweighting enables inexpensive loss/gradient 
computation without repeating expensive free energy calculation
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https://doi.org/10.1101/2020.10.24.353318
https://doi.org/10.1101/2020.10.24.353318
https://github.com/choderalab/neutromeratio
https://github.com/choderalab/neutromeratio


http://qcarchive.molssi.org

OpenMM and the Open Force Field Initiative 
are working closely with MolSSI to expand the 
QCArchive to support the construction of 
next-generation machine learning force fields

https://github.com/openmm/spice-dataset 

DFT ωB97M-D3(BJ)/def2-TZVPPD level of theory 
>4M core-hours computed on QCFractal academic clusters

SPICE QML model:

0.7 kcal/mol

median absolute error

http://qcarchive.molssi.org
https://github.com/openmm/spice-dataset
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Spice is our first step toward building “foundation models” 
that can be rapidly tailored to different applications
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CAN WE change practice in structure-enabled drug 
discovery by leveraging data we generate?
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hybrid physical / machine learning models could drive 
a new era of productivity in computational chemistry

▪ Fast, structure-based machine learning surrogates assess designs over 
vast synthetic chemical spaces prioritize useful calculations

▪ Adaptive allocation of effort to alchemical free energy calculations  
guided by machine learning cost predictions

▪ Machine learned optimal alchemical transformations produce faster 
estimates of free energy differences more cheaply

▪ Learnable machine learning potentials fit to experimental free energy  
and quantum chemical data produce higher accuracy predictions

Chemical Science 2022 https://doi.org/10.1039/D2SC02739A 

bioRxiv https://www.biorxiv.org/content/10.1101/2021.08.24.457513v2

https://doi.org/10.1039/D2SC02739A
https://www.biorxiv.org/content/10.1101/2021.08.24.457513v2


preprints and code
gimlet: graph convolutional networks for partial charge assignment

preprint: https://arxiv.org/abs/1909.07903  
code: http://github.com/choderalab/gimlet  


espaloma: end-to-end differentiable assignment of force field parameters

preprint: https://arxiv.org/abs/2010.01196   
code: https://github.com/choderalab/espaloma 


qmlify: hybrid QML/MM alchemical free energy calculations for protein-ligand binding

preprint: https://doi.org/10.1101/2020.07.29.227959 
code: https://github.com/choderalab/qmlify


neutromeratio: alchemical free energy calculations with fully QML potentials for tautomer ratio prediction 
preprint: https://doi.org/10.1101/2020.10.24.353318  
code: https://github.com/choderalab/neutromeratio 

https://arxiv.org/abs/1909.07903
http://github.com/choderalab/gimlet
https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma
https://github.com/choderalab/qmlify
https://doi.org/10.1101/2020.10.24.353318
https://github.com/choderalab/neutromeratio
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