rom Espaloma to SAKE to brew, distill, and mix force fields with balanced briskness, smoothness, and intricacy

yuanqing wang new york university 16 mar 2023 santa fe, n. méx.

🥙 @YuanqingWang 📨 <u>wangyq.net</u> 🖂 <u>wangyq@wangyq.net</u>

Χ

 $U_{\mathsf{MM}}(\mathbf{x}; \mathcal{G}, \mathbf{\Phi}_{\mathsf{FF}})$ $= \sum_{(v_i,v_j) \in \mathcal{G}_{bond}}$ $U_{bond}(r)$ $\sum_{(v_i,v_j,v_k)\in \mathcal{G}_{angle}}$ $U_{\mathsf{angle}} \left(\theta \right)$ $U_{\text{torsion}}(\phi)$ + $\sum_{(v_i, v_j, v_k, v_l) \in \mathcal{G}_{torsion}}$ + $\sum U_{Coulomb}$ $(v_i, v_j) \in \mathcal{G}_{Coulomb}$ + (v_i,v_j)∈G_{van} der Waals

$$\Phi_{FF}$$

$$U_{\text{bond}}\left(r(\mathbf{x}; v_{i}, v_{j}); K_{r}(\Phi_{\text{FF}}; v_{i}, v_{j}), r_{0}(\Phi_{\text{FF}}; v_{i}, v_{j})\right)$$

$$U_{\text{angle}}\left(\theta(\mathbf{x}; v_{i}, v_{j}, v_{k}); K_{\theta}(\Phi_{\text{FF}}; v_{i}, v_{j}, v_{k}), \theta_{0}(\Phi_{\text{FF}}; v_{i}, v_{j}, v_{k})\right)$$

$$U_{\text{torsion}}\left(\phi(\mathbf{x}; v_{i}, v_{j}, v_{k}, v_{l}); \{K_{\phi,n}(\Phi_{\text{FF}}; v_{i}, v_{j}, v_{k}, v_{l})\}_{n=1}^{n_{\text{max}}}, \phi_{0}(\Phi_{\text{FF}}; v_{i}, v_{j}, v_{k}, v_{l})\right)$$

$$U_{\text{Coulomb}}\left(r(\mathbf{x}; v_{i}, v_{j}); q(\Phi_{\text{FF}}; v_{i}), q(\Phi_{\text{FF}}; v_{j})\right)$$

$$U_{\text{van der Waals}}\left(r(\mathbf{x}; v_{i}, v_{j}); \sigma(\Phi_{\text{FF}}; v_{i}, v_{j}), \epsilon(\Phi_{\text{FF}}; v_{i}, v_{j})\right)$$
(1)

$$U_{\text{bond}}(r; K_r, r_0) = \frac{1}{2}K_r(r - r_0)^2$$

 $U_{\text{angle}}(\theta; K_{\theta}, \theta_0) = \frac{1}{2} K_{\theta}(\theta - \theta_0)^2$

$$U_{\text{torsion}}(\phi; \{K_{\phi,n}\}, \phi_0) = \sum_{0}^{n_{\max}} K_{\phi,n}[1 + \cos(n\phi - \omega)] + C_{\phi,n}[1 + \cos(n\phi -$$

legacy atom typing schemes are labor-intensive and poorly extensible

```
<HarmonicAngleForce>
<HarmonicBondForce>
<Bond type1="ow" type2="hw" length="0.09572" k="462750.4"/>
                                                               <Angle type1="hw" type2="ow" type3="hw" angle="1.82421813418" k="836.8"/>
                                                               <Angle type1="hw" type2="hw" type3="ow" angle="2.2294835865" k="0.0"/>
<Bond type1="hw" type2="hw" length="0.15136" k="462750.4"/>
                                                               <Angle type1="br" type2="c1" type3="br" angle="3.14159265359" k="483.33568"/>
<Bond type1="br" type2="br" length="0.2542" k="103093.76"/>
```

Table 1. Atom Types and Their Definitions in GAFF. Wang et al. (2014) doi:10.1002/jcc.20035

No.	Atom type	Description	No.	Atom type	Description
1	с	sp ² carbon in C=O, C=S	2	c1	sp ¹ carbon
3	c2	sp^2 carbon, aliphatic	4	c3	sp ³ carbon
5	ca	sp^2 carbon, aromatic	6	n	sp ² nitrogen in amides
7	n1	sp ¹ nitrogen	8	n2	sp^2 nitrogen with 2 subst., real double bond
9	n3	sp^3 nitrogen with 3 subst.	10	n4	sp^3 nitrogen with 4 subst.
11	na	sp ² nitrogen with 3 subst.	12	nh	amine nitrogen
		type: ca	typ	De: ca	connected to aromatic rings
					same type! 😡 😡 😡

optimizing FF parameters alone has been feasible

 $\Phi_{ extsf{MM}}$

 $\Phi_{\mathrm{MM}}^* = \operatorname{argmin} \mathscr{L}(U_{\mathrm{MM}}(\mathbf{x}; \mathscr{G}, \Phi_{\mathrm{MM}}), U_{\mathrm{qm}}(\mathbf{x}))$

RMSE ≈ 3 kcal/mol w.r.t. QM

legacy atom typing schemes are labor-intensive and poorly extensible

<HarmonicBondForce> <Bond type1="ow" type2="hw" length="0.09572" k="462750.4"/> <Bond type1="hw" type2="hw" length="0.15136" k="462750.4"/> <Bond type1="br" type2="br" length="0.2542" k="103093.76"/>

Table 1. Atom Types and Their Definitions in GAFF. Wang et al. (2014) doi:10.1002/jcc.20035

No.	Atom type	Description	No.	Atom type	Description
1	с	sp ² carbon in C=O, C=S	2	c1	sp ¹ carbon
3	c2	sp ² carbon, aliphatic	4	c3	sp ³ carbon
5	ca	sp ² carbon, aromatic	6	n	sp ² nitrogen in amides
7	n1	sp ¹ nitrogen	8	n2	sp ² nitrogen with 2 subst., real double bon
9	n3	sp^3 nitrogen with 3 subst.	10	n4	sp ³ nitrogen with 4 subst.
11	na	sp ² nitrogen with 3 subst.	12	nh	amine nitrogen
					connected to aromatic rings
node att	ribute		we need: an <mark>optimizable</mark> function from node attribute and n to node representation	neighborhood	multiset $h_v = f(h_v^{(0)}, \rho(\mathcal{N}(v)))$
number neighbo	of neighbors r attributes	neighborhood multisite			

```
<HarmonicAngleForce>
<Angle type1="hw" type2="ow" type3="hw" angle="1.82421813418" k="836.8"/>
<Angle type1="hw" type2="hw" type3="ow" angle="2.2294835865" k="0.0"/>
<Angle type1="br" type2="c1" type3="br" angle="3.14159265359" k="483.33568"/>
```

$$h_v = f(h_v^{(0)}, \rho(\mathcal{N}(v)))$$

hypothesis: GNNs are at least as expressive as legacy atom typing schemes

stage 1: graph net continuous atom typing replaces discrete ones

(a) # discrepancies per molecule (b) error rate per element \geq 2 discrepancies 1 discrepancy 5.5% 1.70% 11.0% 83.5% 0.03%0.00% н С 0 0 discrepancy

(c) molecules with most discrepancies

Overall agreement: 99.07%

(d) confusion matrix of learned vs reference atom type

extensible surrogate potential optimized by message-passing

Stage 1: graph net continuous atom embedding

Chemical Science

rsc.li/chemical-science

ISSN 2041-6539

EDGE ARTICLE Yuanqing Wang, John D. Chodera *et al.* End-to-end differentiable construction of molecular mechanics force fields Volume 13 Number 41 7 November 2022 Pages 11953-12246

extensible surrogate potential optimized by message-passing

Stage 1: graph net continuous atom embedding

stage 2 and 3: Janossy pooling assigns embeddings and parameters in a symmetry-preserving manner

<HarmonicBondForce>

<Bond type1="ow" type2="hw" length="0.09572" k="462750.4"/> <Bond type1="hw" type2="hw" length="0.15136" k="462750.4"/> <Bond type1="br" type2="br" length="0.2542" k="103093.76"/>

 $\{\sigma_{v_0}, \epsilon_{v_0}\} = NN_v(h_{v_0})$

 $\{k_{a_{012}}, \phi_{eq,a_{012}}\} = NN_a([h_{v_0}: h_{v_1}: h_{v_2}]) + NN_a([h_{v_2}: h_{v_1}: h_{v_0}])$

Murphy et al. (2019) arXiv: 1811.01900

<HarmonicAngleForce>

<Angle type1="hw" type2="ow" type3="hw" angle="1.82421813418" k="836.8"/> <Angle type1="hw" type2="hw" type3="ow" angle="2.2294835865" k="0.0"/> <Angle type1="br" type2="c1" type3="br" angle="3.14159265359" k="483.33568"/>

$$\sum_{i\in[n]} \vec{f}(|\boldsymbol{h}|, \boldsymbol{h}_{\pi}; \boldsymbol{\theta}^{(f)}), \quad v_0 = v_1$$

$$\{k_{e_{01}}, r_{eq, e_{01}}\} = NN_e(h_{v_0}: h_{v_1}) + NN_e(h_{v_1}: h_{v_1})$$

 $\{k_{i,t_{0123}}, \phi_{eq,i,t_{0123}}\} = NN_t(h_{v_0}: h_{v_1}: h_{v_2}: h_{v_3}) + NN_t(h_{v_3}: h_{v_2}: h_{v_1}: h_{v_0})$

extensible surrogate potential optimized by message-passing

Stage 1: graph net continuous atom embedding

espaloma recovers MM energies and parameters

espaloma outperforms current force fields in QM accuracy and can be easily trained for heterogeneous systems

	(a) datacat	# mole	# trais	# snapshots	Espalor	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)				
	(a) dataset		# trajs	# shapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff	
Р	hAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
OpenFF Gen2 Optimization (druglike)		792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768^{2.3388}_{2.0380}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
	VEHICLe (heterocyclic)	24867	24867	234326	$0.4476^{0.4690}_{0.4273}$	$0.4233^{0.4414}_{0.4053}$	$8.0247_{7.8271}^{8.2456}$	$8.0077_{7.7647}^{8.2313}$	9.4014 ^{9.6434} 9.2135		
	PepConf (peptides)	736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1}^{3.1}$	
ioint	OpenFF Gen2 Optimization	1528	11537	15902	$0.8264_{0.7682}^{0.9007}$	$1.8764_{1.7827}^{1.9947}$	$2.1768^{2.3388}_{2.0380}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
Joint	PepConf	1528	11557	43902	$1.2038^{1.3056}_{1.1178}$	$1.7307^{1.8439}_{1.6053}$	$3.6143_{3.4870}^{3.7288}$	4.4446 ^{4.5738} 4.3386	$4.3356^{4.4641}_{4.1965}$	$3.1502_{3.1}^{3.1}$	

espaloma outperforms current force fields in QM accuracy and can be easily trained for heterogeneous systems

(a) datacat	#mole #	# traic	# snapshots	Espalon	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) Galasel	# 11015	# ti ajs	# shapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff	
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		

PhAlkEthOH doi: https://dx.doi.org/10.1021/acs.jctc.8b00640

PhAlkEthOh: Phenyls, Alkanes, Ethers, and alcohols (OH) (a low-complexity chemical space)

how does espaloma compare to discrete chemical perception?

(a) datasat	# mols	# trajs	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)			
(a) dataset				Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398^{1.2332}_{1.0715}$	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$	
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413^{0.7920}_{0.6914}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	

OpenFF Gen2 QM data doi: https://doi.org/10.1021/acs.jctc.1c00571

OpenFF Gen2 Optimization set: Diverse druglike fragments challenging for force fields (a moderate-complexity chemical space)

how well does espaloma compare to legacy force fields on rare chemistries?

(a) datacat	# mols	# trajs	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)			
(a) Galasel	# mois			Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$	
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768^{2.3388}_{2.0380}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233^{0.4414}_{0.4053}$	$8.0247_{7.8271}^{8.2456}$	$8.0077_{7.7647}^{8.2313}$	9.4014 ^{9.6434} 9.2135	

VEHICLe doi: <u>http://doi.org/10.1021/jm801513z</u>

VEHICLe: Virtual exploratory heterocyclic drug scaffold library (aromatic bicyclic heterocyclic compounds containing C, N, O, S, H)

how well does espaloma compare to legacy force fields on rare chemistries?

(a) datacat	# mols	# trajs	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) Galasel				Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff	
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247_{7.8271}^{8.2456}$	$8.0077^{8.2313}_{7.7647}$	9.4014 ^{9.6434} 9.2135		
									~ ~	

how well does espaloma perform on amino acids?

(a) dataset	# mols	# trais	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)			
(a) ualasel	# 11015	# trajs		Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$	
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247^{8.2456}_{7.8271}$	$8.0077_{7.7647}^{8.2313}$	9.4014 ^{9.6434} 9.2135	
PepConf (peptides)	736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1}^{3.1}$

PepConf: Short peptides, including disulfides and cyclic peptides

VEHICLe doi: http://doi.org/10.1021/jm801513z

espaloma outperforms current force fields in QM accuracy and can be easily trained for heterogeneous systems

	(a) datacat	# mala	# trais	# snapshots	Espalon	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)			
	(a) Galasel		# trajs	# shapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff
Р	hAlkEthOH (simple CHO)	7408	12592	244036	$0.8656^{0.9131}_{0.8225}$	$1.1398^{1.2332}_{1.0715}$	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$	
OpenFF Gen2 Optimization (druglike)		792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768^{2.3388}_{2.0380}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	
	VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247_{7.8271}^{8.2456}$	$8.0077^{8.2313}_{7.7647}$	9.4014 ^{9.6434} 9.2135	
	PepConf (peptides)	736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1}^{3.1}$
ioint	OpenFF Gen2 Optimization	1528	11527	45902	$0.8264_{0.7682}^{0.9007}$	$1.8764_{1.7827}^{1.9947}$	$2.1768^{2.3388}_{2.0380}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	
joint	PepConf	1528		45902	$1.2038^{1.3056}_{1.1178}$	$1.7307^{1.8439}_{1.6053}$	$3.6143_{3.4870}^{3.7288}$	4.4446 ^{4.5738} 4.3386	$4.3356^{4.4641}_{4.1965}$	$3.1502_{3.1}^{3.1}$

Tyk2 benchmark doi: https://doi.org/10.1021/ja512751q

Tyk2 from OpenFF benchmark set espaloma joint model

+ TIP3P water

covalent adduct can be parametrized stably

Espaloma small molecule parameters perform as well or better than modern biomolecular force fields

OpenFF 1.2.0 small molecule Amber ff14SB protein

espaloma "joint" 0.2.2 small molecule Amber ff14SB protein

EspalomaCharge: Machine learning-enabled ultra-fast partial charge assignment

EspalomaCharge introduces minimal discrepancy

dataset	N	ava N	average R	MSE(e)	averag	e walltime (s)	
uataset	(" mal	avg. Matoms	EspalomaCharge - OpenEye	AmberTools - OpenEye	EspalomaCharge	AmberTools	OpenEye
SPICE [12] test set	29079	39.36	$0.0435_{0.0432}^{0.0438}$	$0.0623^{0.0628}_{0.0618}$	0.05	93.10	3.79
FDA approved	1019	34.80	$0.0266_{0.0255}^{0.0281}$	0.0244 ^{0.0263} 0.0227	0.03	46.15	1.87
ZINC250K [20]	22 02 50	42.70	$0.0187_{0.0187}^{0.0187}$	$0.0197_{0.0197}^{0.0198}$	0.05	124.89	3.63
FreeSolv [11]	641	18.10	$0.0110_{0.0104}^{0.0117}$	0.0067 ^{0.0077} 0.0057	0.03	9.62	0.43
PDB expo [3]	23399	35.94	0.0186 ^{0.0188} 0.0184	$0.0232_{0.0229}^{0.0236}$	0.04	88.86	3.63

Table 1. EspalomaCharge accurately and efficiently reproduces AM1-BCC charges for a wide variety of chemical **spaces.** Here, N_{mol} denotes the number of molecules in the dataset; avg. N_{atoms} denotes the average number of atoms in molecules for the corresponding dataset; average RMSE is the charge RMS deviation between AM1-BCC implementations averaged over all molecules in the dataset, with sub- and superscripts denoting the 95%-confidence interval of the mean (computed by bootstrapping over molecules in the dataset with replacement); average walltime denotes the average wall time for the respective toolkit to assign partial charges for a molecule in the dataset. Boldface statistics denote the best (most accurate or fastest) model or models (in case confidence intervals are indistinguishable) for each statistic.

number of atoms in molecule

EspalomaCharge is very fast, even for large systems

dataset	Ν.	avg. Natame	average R	MSE (e)	averag	e walltime (s)		
uataset	(* mol	avg. Watoms	EspalomaCharge - OpenEye	AmberTools - OpenEy <mark>e </mark>	EspalomaCharge	AmberTools	OpenEye	
SPICE [12] test set	29079	39.36	0.0435 ^{0.0438} 0.0432	0.0623 ^{0.0628} 0.0618	0.05	93.10	3.79	
FDA approved	1019	34.80	$0.0266_{0.0255}^{0.0281}$	0.0244 ^{0.0263} 0.0227	0.03	46.15	1.87	
ZINC250K [20]	220250	42.70	$0.0187_{0.0187}^{0.0187}$	0.0197 ^{0.0198} 0.0197	0.05	124.89	3.63	
FreeSolv [11]	641	18.10	$0.0110_{0.0104}^{0.0117}$	0.00670.0077	0.03	9.62	0.43	
PDB expo [3]	23399	35.94	$0.0186_{0.0184}^{0.0188}$	$0.0232^{0.0236}_{0.0229}$	0.04	88.86	3.63	

Table 1. EspalomaCharge accurately and efficiently reproduces AM1-BCC charges for a wide variety of chemical spaces. Here, N_{mol} denotes the number of molecules in the dataset; avg. N_{atoms} denotes the average number of atoms in molecules for the corresponding dataset; average RMSE is the charge RMS deviation between AM1-BCC implementations averaged over all molecules in the dataset, with sub- and superscripts denoting the 95%-confidence interval of the mean (computed by bootstrapping over molecules in the dataset with replacement); average walltime denotes the average wall time for the respective toolkit to assign partial charges for a molecule in the dataset. Boldface statistics denote the best (most accurate or fastest) model or models (in case confidence intervals are indistinguishable) for each statistic.

t (s)

to integrate EspalomaCharge into your pipeline(s) is easy

\$ pip install espaloma_charge

Listing 1. Installing EspalomaCharge via the pip Python package manager.

>>> from rdkit import Chem; from espaloma_charge import charge >>> molecule = Chem.AddHs(Chem.MolFromSmiles("CCO")) >>> charge(molecule) array([0.95081186, -1.007628 , 0.93298626, -0.1128267 , -0.1128267 , -0.1128267, -0.10835528, -0.10835528, -0.32097816], dtype=float32)

Listing 2. Example illustrating the EspalomaCharge Python API. Here, EspalomaCharge assigns AM1-BCC ELF10 equivalent partial charges to an RDKit Molecule, returning them in a NumPy array.

to integrate EspalomaCharge into your pipeline(s) is easy

>>> from openff.toolkit.topology import Molecule
>>> from espaloma_charge.openff_wrapper import EspalomaChargeToolkitWrapper
>>> toolkit_registry = EspalomaChargeToolkitWrapper()
>>> molecule = Molecule.from_smiles("CCO")
>>> molecule.assign_partial_charges('espaloma-amlbcc', toolkit_registry=toolkit_registry)
>>> molecule.partial_charges
<Quantity([0.95081172 -1.00762811 0.93298611 -0.11282685 -0.11282685 -0.11282685 -0.11282685 -0.11282685 -0.10835543 -0.32097831], 'elementary_charge')>

Listing 3. Example illustrating EspalomaCharge integration with the Open Force Field Toolkit. Here EspalomaCharge is used to provide charges via the ToolkitWrapper facility.

```
$ espaloma_charge -i in.mol2 -o in.crg
$ antechamber -fi mol2 -fo mol2 -i in.mol2 -o out.mol2 -c rc -cf in.crg
```

Listing 4. Example illustrating the use of EspalomaCharge as a fast drop-in replacement for sqm in an AmberTools antechamber workflow. By adding a single line EspalomaCharge can replace the slow sqm-based AM1-BCC model to provide fast charges for AmberTools based worklows.

MM

invariant features and equivariant features

Figure 1. Example of rotation equivariance on a graph with a graph neural network ϕ

invariant features: - embedding

- energy
- atom properties
- molecular properties

equivariant features:

- position
- velocity
- acceleration

you don't need spherical harmonics to describe node environments spatial attention is universally approximative

 \mathcal{H} as

<u>e3nn.org</u>

Given a node v with embedding $h_v \in \mathcal{H} = \mathbb{R}^C$ (where C denotes the embedding dimension) and position $\mathbf{x}_v \in \mathcal{X} = \mathbb{R}^n$ (where *n* denotes the geometry dimension) in a graph \mathcal{G} , its neighbors $u \in \mathcal{N}(v)$ with connecting edges $\{e_{uv}\}$, with displacement vector $\vec{\mathbf{e}}_{uv} = \mathbf{x}_v - \mathbf{x}_u$ and embedding $h_{e_{uv}} = \rho^{v \to e}(h_v, h_u)$ with some aggregation function $\rho^{v \to e}$, we define spatial attention $\phi : \mathcal{X} \times \mathcal{H} \to \mathcal{H}$

$$\phi^{\mathrm{SA}}(v) = \mu ig(igoplus_{i=1}^{N_\lambda} || \sum_{u \in \mathcal{N}(v)} \lambda_i(h_{e_{uv}}) f(ec{\mathbf{e}}_{uv}) || ig),$$

where $\lambda_i : \mathcal{H} \to \mathbb{R}^1, i = 1, ..., N_\lambda$ is a set of arbitrary attention weights-generating function that operates on the edge embedding, $f : \mathcal{X} \to \mathcal{X}$ is an *equivariant* function that operate on the edge vector, $\mu: N_{\lambda} \to \mathcal{H}$ is an arbitrary function that takes the norms of N_{λ} linear combinations, and \oplus denotes concatenation. We drop the explicit dependence of $\phi^{SA}(v)$ on both geometric and embedding properties of v and u for simplicity.

> Wang and Chodera (2022) arXiv:2301.08893

invariant task: machine learning potential construction

Table 1: Inference time (ms) and test set energy (E) and force (F) mean absolute error (MAE) (meV and meV/Å) on the MD17 quantum chemical dataset.

Model		SchNet	DimeNet Klicpera et al., 2020b	sGDML Chmiela et al., 2019	PaiNN Schütt et al., 2021	GemNet(T/Q) Klicpera et al., 2021a	NequIP Batzner et al., 2021	SAKE
	batch of 32		65			88/376	206	12
Interence time	batch of 4		31			38/99	197	4
Acrisin	Е	16.0	8.8	8.2	6.9	-	5.3	$6.46_{6.43}^{6.47}$
Aspiim	F	58.5	21.6	29.5	14.7	9.4	8.2	$9.90^{9.92}_{9.88}$
Ethanol	Е	3.5	2.8	3.0	2.7	-	2.2	$2.26_{2.25}^{2.27}$
Eulanoi	F	16.9	10.0	14.3	9.7	3.7	3.8	$3.70_{3.62}^{\overline{3.77}}$
Malanaldahuda	Е	5.6	4.5	4.3	3.9	-	3.3	$3.26_{3.26}^{3.27}$
Watonaidenyde	F	28.6	16.6	17.8	13.8	6.7	5.8	$5.17_{5.16}^{5.18}$
Nonhtalana	Е	6.9	5.3	5.2	5.0	-	4.9	$4.94_{4.93}^{4.95}$
Napitalene	F	25.2	9.3	4.8	3.3	2.2	1.6	$2.44_{2.44}^{2.44}$
Salicylic acid	Е	8.7	5.8	5.2	4.9	-	4.0	$4.76\overline{\substack{4.77\\4.75}}$
Salleyne acid	F	36.9	16.2	12.1	8.5	5.4	3.9	$5.14_{5.13}^{5.17}$
Toluene	Е	5.2	4.4	4.3	4.1	-	4.0	$4.02_{4.01}^{4.02}$
Tofuelle	F	24.7	9.4	6.1	4.1	2.6	2.0	$2.44_{2.43}^{2.44}$
Uracil	Е	6.1	5.0	4.8	4.5	-	4.5	$4.52_{4.50}^{\overline{4.54}}$
Ulacii	F	24.3	13.1	10.4	6.0	4.2	3.3	$4.05_{4.04}^{4.06}$

Table 2: Test set energy (E) and force (F) mean absolute error (MAE) (meV and meV/Å) on known and unknown molecules in ISO17.

		ACE Kovács et al. 2021	SchNet Schütt et al. 2017	PhysNet	SAKE
known	Е	16	16	4	$12.17^{12.18}_{12.12}$
	F	43	43	5	$12.33_{12.31}^{\overline{12.34}}$
unknown	Е	85	104	127	$53.37_{53.15}^{53.62}$
	F	85	95	60	$39.46_{39.35}^{39.59}$

Table 3: QM9 test set performance.

	α	$\Delta \epsilon$	HOMO	LUMO	μ	
	Bohr ³	meV	meV	meV	D	cal
SchNet Schütt et al., 2017	0.235	63	41	34	0.033	(
DimeNet++ Klicpera et al. 2020a	0.044	33	25	20	0.030	(
SE(3)-TF Fuchs et al. 2020	0.142	53	35	33	0.051	(
EGNN Satorras et al. 2021	0.071	48	29	25	0.029	(
PaiNN Schütt et al., 2021	0.059	36	46	20	0.012	(
TorchMD-Net Thölke and Fabritiis, 2022	0.059	36	20	17	0.011	(
SphereNet Liu et al. 2022	0.030	31	19	23	0.025	(
SAKE	0.068	23	16	13	0.014	(

equivariant task: N-body dynamic system forecasting

Table 4: Mean Squared Error (MSE) and inference time (ms)for dynamic system forecasting.

Architecture	MSE	Inference time
SE(3)-TF (Fuchs et al., 2020)	0.244	0.1346
TFN (Thomas et al., 2018)	0.155	0.0343
GNN (Kipf and Welling, 2016)	0.0107	0.0032
EGNN (Satorras et al., 2021)	0.0071	0.0062
SAKE	0.0049	0.0079
SEGNN (Brandstetter et al., 2021)	0.0043	0.0260

Table 5: V	5: Walking motion capture performance.			
	GNN	EGNN Satorras et al., 2021	GMN Huang et al., 2022	SAKE
MAE	67.3±1.1	59.1±2.1	43.9±1.1	22.7 ±1.6
Epoch time			5.66 s	1.81 s

Wang and Chodera (2022) arXiv:2301.08893

MM

message passing once, and then local interaction

hard-coded topology

traditional MM simple, elegant, and interpretable

tooling to makes this a reality: **O** google/jax-md **O** choderalab/espalomax

Can class ii force fields provide NEAR-QM ACCURACY at mm speeds?

$$\begin{split} E &= \sum_{b} \left[{}^{2}K_{b}(b-b_{0})^{2} + {}^{3}K_{b}(b-b_{0})^{3} + {}^{4}K_{b}(b-b_{0})^{4} \right] \\ &+ \sum_{\theta} \left[{}^{2}K_{\theta}(\theta-\theta_{0})^{2} + {}^{3}K_{\theta}(\theta-\theta_{0})^{3} + {}^{4}K_{\theta}(\theta-\theta_{0})^{4} \right] \\ &+ \sum_{\phi} \left[{}^{1}K_{\phi}(1-\cos\phi) + {}^{2}K_{\phi}(1-\cos2\phi) + {}^{3}K_{\phi}(1-\cos3\phi) + {}^{2}K_{\phi}(1-\cos3\phi) + {}^{2}K_{\phi}(1-\cos3\phi) + {}^{2}K_{\phi}(1-\cos3\phi) + {}^{2}K_{\phi}(1-\cos^{2}\phi)^{6} \right] \\ &+ \sum_{x} K_{x} \chi^{2} + \sum_{p \neq j} \frac{q_{i}q_{j}}{r_{ij}} + \sum_{p \neq j} \epsilon \left[2\left(\frac{r^{*}}{r_{ij}}\right)^{9} - 3\left(\frac{r^{*}}{r_{ij}}\right)^{6} \right] \\ &+ \sum_{b} \sum_{b'} K_{bb'}(b-b_{0})(b'-b'_{0}) + \sum_{\theta} \sum_{\phi} K_{\theta\theta'}(\theta-\theta_{0}) \times \\ &+ \left(\theta'-\theta'_{0}\right) \\ &+ \sum_{b} \sum_{\phi} K_{b\theta}(b-b_{0})(\theta-\theta_{0}) \\ &+ \sum_{b} \sum_{\phi} (b-b_{0})[{}^{1}K_{\phi b}\cos\phi + {}^{2}K_{\phi b}\cos2\phi + {}^{3}K_{\phi b}\cos3\phi \\ &+ \sum_{\phi} \sum_{b'} (b'-b'_{0})[{}^{1}K_{\phi b'}\cos\phi + {}^{2}K_{\phi b'}\cos2\phi + {}^{3}K_{\phi b}\cos3\phi \\ &+ \sum_{\phi} \sum_{\theta} (\theta-\theta_{0})[{}^{1}K_{\phi \theta}\cos\phi + {}^{2}K_{\phi \theta}\cos2\phi + {}^{3}K_{\phi \theta}\cos3\phi \\ &+ \sum_{\phi} \sum_{\theta} \sum_{\theta'} (K_{\phi \theta \theta'}(\theta-\theta_{0})(\theta'-\theta'_{0})\cos\phi \end{split}$$

Hwang et al. (1994) <u>http://doi.org/10.1021/ja00085a036</u>

design messagepassing backbones of graph neural networks for firstprinciple molecular learning

original sins of message-passing graph neural networks

graph convolution is iterative averaging

they were built for social networks and encodes the assumption of homophily

" birds of the same feature fly together" Zachary (1977) Karate Club Social Network Journal of Anthropological Research Vol. 33, No. 4 (Winter, 1977), pp. 452-473 (22 pages)

limited expressiveness: no Weisfeiler-Lehman GNN can tell these apart!

Li et. al. (2018) arXiv:1801.07606

passing random variables rather than point masses as messages alleviate limited expressiveness and oversmoothing

Definition 3.1 from Cai and Wang (2020) 1. Dirichlet energy $\mathcal{E}(f)$ of scalar function f on the graph G is defined as

 $\mathcal{E}(f) = f^T \widetilde{\Delta} f = \frac{1}{2} \sum A_{ij} \left(\frac{f_i}{\sqrt{1+d_i}} - \frac{f_j}{\sqrt{1+d_j}}\right)^2,$ where $\widetilde{\Delta}$ is the normalized Laplacian $\widetilde{\Delta} = \mathbf{I} - \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}}$ (22) and $d_i = D_{ii}$. For a vector field $\mathbf{X} \in \mathbb{R}^{N \times C}$, Dirichlet energy is defined as

$$\mathcal{E}(\mathbf{X}) = \operatorname{tr}(\mathbf{X}^T \widetilde{\Delta} \mathbf{X}). \tag{23}$$

	ESOL	FreeSolv
$STAG_{VI}(\mathbb{R})$	0.5956 ± 0.0200	1.1500 ± 0.0359
$\mathrm{STAG}_{\mathrm{VI}}(\mathbb{R}^C)$	0.6221 ± 0.0142	1.1561 ± 0.0803
$\mathrm{STAG}_{\mathrm{VI}}(\mathbb{R}^{ \mathcal{E} })$	0.6901 ± 0.0427	1.3349 ± 0.1513
$\mathrm{STAG}_{\mathrm{VI}}(\mathbb{R}^{ \mathcal{E} \times C})$	0.5928 ± 0.0326	0.9958 ± 0.0768
STAG _{MLE} (best)	0.5960 ± 0.0375	1.1394 ± 0.0714

Table 4. Performance of STAG with variational inference (VI) on molecule graph datasets

Open Source

Weights Available

An open-source project that can be used and improved by academics and companies alike.

Utilize the existing pre-trained weights to get quickly get started fine-tuning your model.

Training Pipeline

Provides the tools used to train the model under the same license.

Optimized performance for use on state-of-the-art and widely available GPUs.

Why OpenFold?

Permissive License

A permissively licensed model that allows commercial and non-commercial use.

Optimized for Performance

PyTorch-Based

A supercomputer scale, distributed training, PyTorchbased training framework

🖸 choderalab/espaloma 🍹 • Choderalab/malt = molecular active learning testbed \mathbf{O} choderalab/gimlet $\underline{\mathbb{Y}}$ graph inference on molecular topology O choderalab/pinot Trobabilistic inference for novel therapeutics Oyuanqing-wang/sake J spatial attention kinetic network with equivariance Oyuanqing-wang/galax magaraph learning with JAX

QuangingWang

in Yuanqing-Wang 🔤 <u>wangyq.net</u>

many thanks! 谢谢

