Lead Optimization Design Cycle in Orion

Matt Geballe

Head of Cheminformatics & Data Science CUP 2023

Agenda

• Lead Optimization

• Generating Synthetically Accessible Candidates

• Machine Learning and Lead Opt

Drug Discovery Process

J. Am. Chem. Soc. 2016, 138, 43, 14257–14263

Drug Discovery Process

DMTA Cycle in Lead Optimization

- Multiple goals
 - Affinity, ADME-Tox, (Permeability), (Solubility)
 Selectivity, Synthesizability
 - Priorities shift over Time
- Cycle Time
 - Sequential Process
 - Timelines

Lead Opt as (too?) Simple Math

Cycle Success $\propto P_{Design}P_{Make}P_{Test}P_{Analyze}$

Lead Opt as (too?) Simple Math

Lead Opt as (too?) Simple Math

Cycle Success $\propto P_{Design}P_{Make}P_{Test}P_{Analyze}$

LeadOpt Success $\propto P_{Improve}P_{Make}$

Traditional OpenEye Apps/TKs for Lead Opt

- BROOD
- EON
- FreeForm
- SZMAP/GamePlan
- POSIT

What Orion Brings to the Lead Opt Table

• Foundational OE Tools

- Platform
 - Central Data Management
 - Scaling Compute Capacity
 - UI for Analysis & Collaboration

- New Tools
 - Generating Accessible Candidates
 - ML Models
 - Induced Fit Docking
 - Affinity Prediction

Agenda

• Lead Optimization

• Generating Synthetically Accessible Candidates

• Machine Learning and Lead Opt

All methods have push-button execution and capability to build customizable databases/libraries

Building the Foundation – Moieties

Shared definition of **MOIETIES** for all higher-level data structures to use:

<MOIETY>

...

Suzuki Boronics Aldehydes Alkyl bromide

[BD3]([#6]=,:[#6])(-O)-O [OD1]=[CD2H]-[#6] CBr

Visualization created with: https://smarts.plus/

Moieties

Building the Foundation – Reagent Types

Qualifies compounds as **REAGENT TYPE** based on **MOIETIES** present and/or absent:

<REAGENT_TYPES> Reaction: Suzuki_cross_coupling; Reagent: Suzuki_boronics suzuki boronics = 1 acetal = 0acid chlorides = 0aldehydes = 0amidines = 0OH amines_aliphatic_primary = 0 OH amines aromatic primary = 0arylbromide = 0 carboxylic acids = 0chloroformates = 0Yes No ...etc.

No

)ner

CADENCE MOLECULAR SCIENCES

Reagent Types

Moieties

Building the Foundation – Reaction Definitions

Define **REACTION** by list of classified reagents, SMIRKS to specify transformations of reagents to product structures

<REACTIONS>

Suzuki_cross_coupling [c!\$(c:c=O):1]-[Cl,Br:2].[BD3:3]([#6:4]=,:[#6])(-[O:5]) [O:6]>>[#6:4]-[c:1] <REAGENTS> Aryl_bromides Suzuki_boronics </REAGENTS>

Moieties

Definitions for half-reactions (single reagent processing) and retro-transforms are also present

Reaction/Reagent-Based Enumeration

CADENCE MOLECULAR SCIENCES

Reaction/Reagent-Based Enumeration

Filtering and Visualization with Orion

Agenda

• Lead Optimization

• Generating Synthetically Accessible Candidates

• Machine Learning and Lead Opt

Machine Learning in the Lead Opt Context

- Paucity of (Good, Local) Data
 - Prefer simpler models
 - Explore global & local models
 - Beware overfitting
- Good ML Hygiene
 - Domain of Applicability
 - Confidence/Error Bars
 - Explainable Predictions
- Utility in Lead Opt:
 - Tools for assessing "modelability"
 - Filtering and Prioritization

Unlikely

"Cleanliness becomes more important when godliness is unlikely." — P. J. O'Rourke

creative commons cc-by-sa 3.0 license

Model Building in Orion

• Model Building Floes shipped in 2022

- Floe to prepare data
- Floes to train Models
- Floes to apply Models for prediction
- Pre-trained Solubility model

Training Data Pre-Processing

- Molecule standardization
- Simple property distributions
- Duplicate handling
- Response (or class) distribution

Mol Wt

XLogP

XLogP

Train Multiple Models

Grid-Based Parameter Search

Model Building Floe Report

Summary of Model Hyperparameters on Validation Set

Hyperparameters Most Sensitive to MAE 1.02 1.02 1.01 1.01 1.01 0.99 0.99 0.97 0.05 0.1 0.15 0.2 dropout

List of Fully-connected Neural Network Models Generated

Model	#Record #	MinRad	MaxRad	Bit-Length	FP-Type	Dropout	Learning Rate	Hidden Layers	Reg Layers	VMae	VLoss	Link
1	122	0	3	4096	Path	0.4	0.0005	250 150 100	0.04 0.02 0.02	6.99e-01	1.49e+00	Model link
2	126	0	3	4096	Path	0.1	0.0005	250 150 50	0.04 0.02 0.02	7.03e-01	1.56e+00	Model link
3	141	0	3	4096	Path	0.2	0.0005	250 150 100	0.04 0.02 0.02	7.07e-01	1.53e+00	Model link
4	33	1	3	4096	Tree	0.4	0.0005	250 150 100	0.04 0.02 0.02	7.08e-01	1.49e+00	Model link
5	56	1	3	4096	Path	0.1	0.0005	250 150 50	0.04 0.02 0.02	7.14e-01	1.58e+00	Model link
6	128	0	3	4096	Tree	0.4	0.0005	250 150 100	0.04 0.02 0.02	7.16e-01	1.48e+00	Model link
7	86	0	3	4096	Tree	0.1	0.0005	250 150 50	0.04 0.02 0.02	7.19e-01	1.54e+00	Model link
8	58	1	3	4096	Path	0.2	0.0005	250 150 100	0.04 0.02 0.02	7.19e-01	1.56e+00	Model link
9	15	1	3	4096	Tree	0.1	0.001	250 150 100	0.04 0.02 0.02	7.24e-01	1.43e+00	Model link
10	16	1	3	4096	Tree	0.1	0.0005	250 150 100	0.04 0.02 0.02	7.27e-01	1.61e+00	Model link
11	108	0	3	4096	Tree	0.2	0.0005	250 150 100	0.04 0.02 0.02	7.32e-01	1.60e+00	Model link
12	67	0	3	4096	Tree	0.1	0.0005	250 150 100	0.04 0.02 0.02	7.32e-01	1.58e+00	Model link
13	105	0	3	4096	Path	0.4	0.0005	250 150 50	0.04 0.02 0.02	7.35e-01	1.63e+00	Model link

Training: Floe Report and Model Details

NN Hyperparam and Fingerprint Parameters

 Dropout
 Max Epochs
 Hidden Layers 0
 Hidden Layers 1
 Hidden Layers 2
 Reg Layers 0
 Reg Layers 1
 Reg Layers 2
 Learning Rate
 FP Type
 FP BitLength
 Min Rad
 Max Rad

 0.1
 100
 250
 150
 100
 0.06
 0.04
 0.02
 0.000
 T
 4056
 0
 3

 Neural Network Epoch Training Plots

Tutorials and How-To Guides in Floe Documentation

Model Building Summary

- Input
 - Molecules (or custom feature vectors)
 - Response property
- Training Setup
 - Regression or Classification
 - Automatic Train/Test/Validation splits and cross-validation

- Build Multiple Models (in Parallel)
 - Featurization Parameters (FPs for now)
 - Neural Network hyperparameters
- Comprehensive Floe Report
 - Summary with Model Ranking
 - Individual Model Performance

Making Predictions

- Predictions in Parallel
 - Take advantage of Orion, predictions can be applied at scale
- Confidence and Domain of Applicability
 - Models retain knowledge of training set property distributions
 - Multiple ways to assess uncertainty (property box, dropout)
 - Train and supply separate Bayesian uncertainty model
 - High/Med/Low assessment with rationale
- Explainable Predictions

Local Interpretable Model-Agnostic Explanations (LIME)

- Interpretable: qualitative understanding between the input variables and the response
- Local Fidelity: learns an interpretable model locally around the prediction.

Prediction Explainer Examples

Future Work

- Graph Convolutions
- 3D Representations

- Distributed Training of Larger Models
- Hyperparameter Optimization

- Kriging
- Diffusion

- Advanced Train/Test Splitting
- Model Comparison

And much more...

Conclusions

- Orion brings all of OpenEye Lead Opt capabilities into one place
 - Ways to increase $P_{Improve}$ and P_{Make}
- Robust cheminformatic foundation for building synthetically accessible lead opt libraries
- General ML tools to assist in model building with guardrails

Acknowledgements

- Burt Leland
- Sayan Mandal
- David Hamilton
- Cheminformatics & Data Science Group
- Scientific Development Teams
- Cloud Teams
- Geoff Skillman, Ant Nicholls, Bob Tolbert

Open Positions in the Cheminformatics & Data Science Group

Thank You

CADENCE MOLECULAR SCIENCES

