Scientific Developments in Floes, Toolkits and Applications: Part I Shyamal Nath CUP 2023

Introduction

- Six and Half years at OpenEye
- Molecular Modeling, Scientific Development
- Toolkits and Applications Release management
- Scientific Validation

OpenEye Products

Applications and Toolkits

Applications and Toolkits - Platforms

Applications

OS	Versions
Linux	RHEL7/8, Ubuntu20/22
Windows	Win10, Win11
macOS	11, 12

- macOS 12/M1
- AWS Graviton
- Ubuntu 22
- Visual Studios 2022

Toolkits

Package	Versions	Linux	Windows	macOS
Python	3.7, 3.8, 3.9, 3.10	RHEL7/8, Ubuntu20/20-ARM/22	Win10/11	11, 12
C++		RHEL7/8, Ubuntu20/20-ARM/22	Win10/11 (VS2017/19/22)	11, 12
Java	1.8, 11	RHEL7/8, Ubuntu20/20-ARM/22	Win10/11	11, 12
C#			Win10/11 (VS2017/19/22)	

Floe Packages with Core OE Science

- OpenEye Snowball Cubes
- OpenEye Classic Floes (~25 floes)
- OpenEye ChemInfo Floes (~25 floes)
- OpenEye MacroMolecular Data Service (MMDS) Floes (~10 floes)
- OpenEye Biomodeler Floes (~20 floes)
- OpenEye Large Scale Floes (~15 floes)
- OpenEye Generative Design Floes (~15 floes)
- OpenEye Large Scale Reaction Enumeration Floes (~10 floes)

OpenEye Model Building Floes (~10 floes)

OpenEye 3D QSAR Models Floes

OEChem TK: Enhanced Stereo Support

- Added limited support for Enhanced Stereo and CXSMILES in OEChem
 - Used by Enamine, requested by customers
- Support rolled forward into Flipper, OMEGA, Orion

OMEGA: MCS based Fix

Fragment template to fix

Molecule template to fix based on MCS

Shape: Flexible Overlay

- Flexible Overlay with Shape, color and Forcefield
 - Rigid reference molecule
 - Flexible fit molecule

Virtual Screening with Flexible Overlay (DUDE)

POSIT: Modified ShapeFit Algorithm

- Simultaneous optimization of force field, shape and color
- Choice of forcefield: MMFF, parsley, Sage (default)
- Multiple Pose generation

CADENCE MOLECULAR SCIENCE

Hermite Representation of Shape and ES **POSTER**

Protein view from VIDA

Low resolution Hermite Prep NPolyMax = 5 (56 Hermite coefficients kept) High resolution Hermite Prep NPolyMax = 30 (5456 Hermite coefficients kept)

 $Shape = \sum C_i (Basis Shape)_i$

Gaussian

Hermite 5

Hermite 30

Natoms = ~ 1450 ; sigma = 2.0A

Sheffield Solvation for Proteins

CADENCE MOLECULAR SCIENCES

More on Toolkits and Applications

SPRUCE

- BioAssembly factory 5-10x speed-up
- Standardizing inputs before Spruce
- Filtering out Bad output structures

PICTO

- Multiple-molecule handling
- Hydrogen Display
- Atom labeling

SZYBKI

 Protein-ligand optimization with FF14SB-OpenFF and PB/Sheffield

on ChEMBL 31

• Multi-state pKa Model

BROOD **POSTER**

Two new BROOD Databases based

MacroMolecular Data Service (MMDS)

• 105,779 PDB experiments were prepared -> ~200,000 design units

PDB code

20%

61%

HT

MT

NT

NA

- 1,325 models from AlphaFold2 were prepared and added
- Organized in MMDS
 - Guide to pharmacology tree
 - Uncategorized tree
 - Currently at 12,728 targets

Model Building Floes

POSTER

- Shipped general Model Building Floes in Orion®
 - General ML Models on 2D Fingerprints
 - Explainable Predictions
 - Confidence and Domain of Application

List of Fully-connected Neural Network Models Generated

Mode	#Record	# MinRac	MaxRad	Bit-Length	FP-Type	Dropout	Learning Rate	e Hidden Layers	Reg Layers	VMae	VLoss	Link
1	122	0	3	4096	Path	0.4	0.0005	250 150 100	0.04 0.02 0.02	6.99e-01	1.49e+00	Model link
2	126	0	3	4096	Path	0.1	0.0005	250 150 50	0.04 0.02 0.02	7.03e-01	1.56e+00	Model link
3	141	0	3	4096	Path	0.2	0.0005	250 150 100	0.04 0.02 0.02	7.07e-01	1.53e+00	Model link
4	33	1	3	4096	Tree	0.4	0.0005	250 150 100	0.04 0.02 0.02	7.08e-01	1.49e+00	Model link
5	56	1	3	4096	Path	0.1	0.0005	250 150 50	0.04 0.02 0.02	7.14e-01	1.58e+00	Model link
6	128	0	3	4096	Tree	0.4	0.0005	250 150 100	0.04 0.02 0.02	7.16e-01	1.48e+00	Model link
7	86	0	3	4096	Tree	0.1	0.0005	250 150 50	0.04 0.02 0.02	7.19e-01	1.54e+00	Model link
8	58	1	3	4096	Path	0.2	0.0005	250 150 100	0.04 0.02 0.02	7.19e-01	1.56e+00	Model link
9	15	1	3	4096	Tree	0.1	0.001	250 150 100	0.04 0.02 0.02	7.24e-01	1.43e+00	Model link
10	16	1	3	4096	Tree	0.1	0.0005	250 150 100	0.04 0.02 0.02	7.27e-01	1.61e+00	Model link
11	108	0	3	4096	Tree	0.2	0.0005	250 150 100	0.04 0.02 0.02	7.32e-01	1.60e+00	Model link
12	67	0	3	4096	Tree	0.1	0.0005	250 150 100	0.04 0.02 0.02	7.32e-01	1.58e+00	Model link
13	105	0	3	4096	Path	0.4	0.0005	250 150 50	0.04 0.02 0.02	7.35e-01	1.63e+00	Model link

Clustering Floes

- Large overhaul of clustering floes
 - $_{\circ}$ Faster, more methods (K-Medoids)
 - Handle larger datasets
- Problem-focused Floes
 - Diverse Subset
 - Hitlist Clustering
- Large-Scale Clustering
 - $_{\rm \circ}\,$ Parallelized sphere exclusion
- Utilities
 - Generate similarity matrix
 - $_{\odot}\,$ Use external similarity matrix

3D QSAR Models for Binding Affinity

Goals

Better predictive capability than 2D models

POST

- Molecular design insights
- Results interpretation
- Applicability domain and prediction uncertainty

3D QSAR Models for Binding Affinity

External validation/ BACE1 dataset

External validation/ prepped dataset

https://doi.org/10.1007/s10822-019-00231-x

3D QSAR Models for Binding Affinity

Other Floe Packages

Classic-Floes:

- Annotation of interaction hints on docking results dataset for filtering in Orion + interaction fingerprint tanimoto to experimental ligand
- New Single point MMPBSA Floe
- New CHOMP Floe for generating BROOD database
- EON floe extended to accept multiple query molecules

Bio-Modeling Floes:

- New MMDS Data -> New SiteHopper databases to search
- Reduce DU to smallest binding unit (*cost effective for MD)
- Download DU to PDB (outside of ETL floes)

Conclusions

- Significant scientific development our toolkits and products have been performed in 2022 both in advancing our existing products, as well as in some new areas
- With availability of Orion, we are now more posed and committed to advancing both our existing technology and venture into new ones

