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E. Schrödinger thought about (protein) ensembles 

“I propose to develop first what you might call 'a 
naive physicist's ideas about organisms', that is, 
the ideas which might arise in the mind of a 
physicist who, after having learnt his physics 
and, more especially, the statistical foundation 
of his science, begins to think about organisms 
and about the way they behave and function…”

What is life?, 1944

Credit: The Open Library
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Drug Discovery Realms

Targets Hit ID MPO Clinical 
Candidate

Protein Structure, Modeling & 
Simulation



Our uses for protein conformational ensembles
1. Cryo-EM refinement

2. Cryptic pocket identification and 
classification
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the last points is subject to a larger number of constraints than
the initial ones. To reduce the residual strain, we therefore
applied a MC annealing procedure, adopting the merit function
EMC(s,Δ), also called “stress” function in MDS terminology, to
all the points in the D-dimensional representation. The stress
function EMC(s,Δ) is the squared difference in the representa-
tion of the two matrices, the M-dimensional and its fictitious
D-dimensional representation:

EMCðs,ΔÞ ¼ ∑
N

n < m
½dnmðs,ΔÞ % dMDS

nm ðs,ΔÞ&2 ð10Þ

In order to evaluate the appropriateness of the choice of D, the
preservation of an order relation within the distance matrices is
verified. In the negative case, the dimension is increased, and the
entire procedure is repeated.
The postprocessing procedure consists of applying the above

procedure for each interval Δ along the steering coordinate. The
final outcome is thus a set of reduced representations for this
degree of freedom (see Figure 2C).
At the end of the procedure, one gets an intuitive representa-

tion of the different families of steering processes that may occur.
By inspecting the structural differences between representative
members of different families, we obtain a picture of the different
processes occurring at the molecular level during ligand unbind-
ing. This final step is represented in Figure 1C and D.
We note that a similar postprocessing tool can be applied to

any set of distance matrices. Therefore, when studying the alanine
dipeptide, we also appliedMDS to theCartesian coordinates of the
atoms. In this case, each entry of the matrix dnm

RMSD(s,Δ) was ob-
tained using the root mean square deviation (RMSD) of the heavy
atoms of two structures along the steering path, obtained after
optimal alignment through the Kearsley algorithm.35We term this
analysis “Cartesian-MDS” to differentiate it from the work-based
LMR-MDS. Their comparison (see Results Section) is instru-
mental in verifying the connection between the local mechanical
response and the structural changes of the system.
It is worth noting that theMDS implementation here described

was intentionally rather unsophisticated, and for this specific
problem that included a data set with relatively modest size, our
MDS approach could be basically equivalent to other more
advanced methods, like classical Torgerson multidimensional
scaling. The latter approach has to be highly recommended when
a larger data set has to be analyzed.32

Simulation Details. All the MD simulations in the present
work were carried out with NAMD2.7 code.36 The simulations
in the NVT ensemble were performed using the Langevin
thermostat,37 and additional steering forces were introduced
via the PLUMED38 plugin integrated in the NAMD code.
For alanine dipeptide (see Figure 3A for a molecular sketch),

we used CHARMM27 force field,39 a time step of 0.2 fs without
constraining the covalent-bond length involving hydrogen atoms
so as to maximize the number of degrees of freedom involved.
A Langevin thermostat at 300 K with relaxation time of 8 ps was
used tomaintain the average temperature during out-of-equilibrium
runs. We performed steered MD simulation using mean square
displacement (MSD) of the heavy atoms with respect to C7ax
configuration as a pulling coordinate. Optimal alignment was
obtained using the Kearsley algorithm.35 A number of tests were
performed to choose the speed for pulling and themagnitude of the
spring constant. A limited dissipative workwas obtainedwith a value
of 2000 kcal/(Å4

3mol) for the spring constant and 0.005 Å
2/ps

for the pulling speed (Supporting Information, Figure S1). Unless
specified, all the molecular representations were generated using
VMD.40

For (R)-roscovitine/CDK5 complex, the starting geometry
used in the simulations was obtained after removing the p25
activator from the X-ray structure retrieved from the Protein
Data Bank (PDB code: 1UNL).41 The Amber parm99SB42 force
fieldwas used for the protein, while the (R)-roscovitinewas treated
with the general Amber force field for organic molecules43 and the
charges were derived according to the restrained electrostatic
potential (RESP) procedure.44 Prior to the steered MD simula-
tions, the system was minimized and equilibrated in a box with
10 371 TIP3P45 water molecules and pressurized for 2 ns in the
NPT ensemble using a Langevin thermostat37 and a Langevin
piston barostat.46 Long-range electrostatic interactions were
treated with the particle mesh Ewald (PME) method.47 Short-
range nonbonded interactions were calculated using a cutoff

Figure 3. Structural and free energy features of alanine dipeptide. (A)
Ball and stick representation of alanine dipeptide along with theΦ and
Ψ dihedrals used in the Ramachandran plot are shown. (B) Free energy
landscape of alanine dipeptide as a function of the Φ and Ψ dihedrals
produced via umbrella sampling. The isoline separation is of 1.0 kcal/mol.
Both C7eq and C7ax minima are connected by three different pathways
denoted with three different colors (black, red, and blue). (C) Stick
representation of the two metastable conformers C7eq and C7ax (heavy
atoms only).

Illustration of protein sampling: alanine dipeptide
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Adapted from Patel et al, JCTC, 2011
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many-µs of biased MD sampling

Global minimum
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Brief outline of the Weighted Ensemble algorithm

Adapted from: Fig. 5 of Bogetti, et al, A Suite of Advanced Tutorials for WESTPA 2.0, accepted in LiveCOMs 2023 

10ps - 100ps
1-3 features

Pcoords
logs
weights

Ready MD files



Sampling alanine dipeptide using WE simulations

• Molecular system: 
openmmtools.testsystems.AlanineDipeptideVacuum
o Force field: Amber ff96
o Initial conformation obtained by local energy minimization

• MD integrator: Langevin dynamics at 298 K with a 
timestep of 1 fs and collision frequency of 1 ps−1.
• WE resampling time: 10 ps
• WE allocation: 4 walkers per bin

Initial conformation (C5)



WE sampling when the best coordinate is known

Initial conformation (C5)

• 2ns of total molecular time
• WESTPA in Orion using the 

Garden floe package
• Sampling j/f backbone 

angles
• Minimal Adaptive Binning
• Starting in C5/C7eq basin



What if the best progress coordinate is unknown?

Normal mode

Deformation (M
D)

Projection

The projection of a deformation mode 
onto a normal mode is a reasonable 

guess as a sampling progress coordinate
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Automated rare event sampling of alanine dipeptide

0 ≤ 𝑡 ≤ 2	ns

PC1

PC2

Automated progress coordinates: Projection onto the first two principal components (PC) of heavy-
atom displacements from the initial conformation, fit to a 100 ns MD trajectory that remained 
trapped in the C5/C7eq basin.

?



Normal mode sampling is good, but not perfect
Progress 

coordinate

PC1, PC2

𝜙, 𝜓

10ns 20ns

10ns 20ns
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Conclusions
Protein ensemble generation is important for many applications in the 
drug discovery pipeline.

Here, we will show two applications of protein ensemble generation:
1) Cryo-EM structure refinement
2) Cryptic pocket identification and classification

Finally, the protein sampling methods (including cryptic pocket 
analysis) will be available in our OE Floes release this summer!
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The End


